Boundary Value Problem based on specific problem

3 vues (au cours des 30 derniers jours)
Parvesh Deepan
Parvesh Deepan le 28 Fév 2024
Commenté : Torsten le 29 Fév 2024
clear all;
close all;
clc;
%% INPUTs:
f = 6; % Natural Cyclic Frequency (1/sec or Hertz-Hz)
x0 = 0.02; % Initial Displacement (in m)
v0 = 0.25; % Initial Velocity (in m/s)
%% OUTPUTs:
wn = 2*pi()*f % Natural Circular Frequency or Angular Frequency (rad/s)
wn = 37.6991
T = 1/f % Fundamental Time-Period (sec)
T = 0.1667
A = sqrt((x0^2) + (v0/wn)^2) % Amplitude (m)
A = 0.0211
vm = A*wn % Maximum Velocity (m/s)
vm = 0.7943
am = vm*wn % Maximum Acceleration (m/s/s)
am = 29.9462
Phi = atand(x0*wn/v0) % Phase Angle (in degree)
Phi = 71.6559
syms X(t)
E = diff(X,t,2) + (wn^2)*X == 0;
x = dsolve(E) % C1 & C2 are constant and can be determined by BCs
x = 
%% I need to find constant C1 & C2 through boundary value problem as x(0) = 0 & x'(0)=0. Can someone help me out?

Réponse acceptée

Torsten
Torsten le 28 Fév 2024
Déplacé(e) : Torsten le 28 Fév 2024
x(0) = 0 gives C1 = 0, x'(0) = 0 gives C2 = 0. Thus the solution of your equation is x = 0 for all t.
  2 commentaires
Parvesh Deepan
Parvesh Deepan le 29 Fév 2024
sorry my bad.
The BCs are x(0) = 0.02 & x'(0) = 0.25
Torsten
Torsten le 29 Fév 2024
clear all;
close all;
clc;
%% INPUTs:
f = 6; % Natural Cyclic Frequency (1/sec or Hertz-Hz)
x0 = 0.02; % Initial Displacement (in m)
v0 = 0.25; % Initial Velocity (in m/s)
%% OUTPUTs:
wn = 2*pi()*f % Natural Circular Frequency or Angular Frequency (rad/s)
wn = 37.6991
T = 1/f % Fundamental Time-Period (sec)
T = 0.1667
A = sqrt((x0^2) + (v0/wn)^2) % Amplitude (m)
A = 0.0211
vm = A*wn % Maximum Velocity (m/s)
vm = 0.7943
am = vm*wn % Maximum Acceleration (m/s/s)
am = 29.9462
Phi = atand(x0*wn/v0) % Phase Angle (in degree)
Phi = 71.6559
syms X(t)
E = diff(X,t,2) + (wn^2)*X == 0;
dX = diff(X,t);
conds =[X(0)==0.02,dX(0)==0.25];
x = dsolve(E,conds) % C1 & C2 are constant and can be determined by BCs
x = 
fplot(x,[0 1])

Connectez-vous pour commenter.

Plus de réponses (0)

Catégories

En savoir plus sur Particle & Nuclear Physics dans Help Center et File Exchange

Produits


Version

R2019a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by