Please help me with syntax error on line 52
2 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
function [e1, e2] = spand_hw7(mesh, d, f, dfdx)
% Check if input arguments are provided
if nargin < 4
error('Insufficient input arguments. Please provide all required inputs.');
end
% Initialize error norms
e1 = 0;
e2 = 0;
% Define Gauss quadrature points and weights
x_quad = [-sqrt(5 + 2*sqrt(10/7))/3, 0, sqrt(5 + 2*sqrt(10/7))/3];
w_quad = [5/9, 8/9, 5/9];
% Loop over elements
for el = 1:size(mesh.conn, 2)
% Element nodes
nodes = mesh.conn(:, el);
% Element coordinates
xe = mesh.x(nodes);
% Element displacements
de = d(nodes);
% Jacobian matrix
J = (xe(end) - xe(1)) / 2;
% Initialize element error norms
e1_el = 0;
e2_el = 0;
% Loop over quadrature points
for q = 1:length(x_quad)
% Quadrature point
xq = (xe(end) + xe(1)) / 2 + x_quad(q) * J;
% Interpolated solution at quadrature point
u_interp = sum(N(xq, xe) .* de');
% Exact solution and its derivative at quadrature point
u_exact = f(xq);
du_exact = dfdx(xq);
% Compute L2 error norm
e1_el = e1_el + w_quad(q) * (u_exact - u_interp)^2;
% Compute energy error norm
e2_el = e2_el + w_quad(q) * sum((du_exact - de' .* dNdx(xq, xe)).^2);
end
% Add element error norms to total error norms
e1 = e1 + e1_el * J;
e2 = e2 + e2_el * J;
end
% Normalize error norms
e1 = sqrt(e1);
e2 = sqrt(e2);
end
% Shape functions
function N_val = N(x, xe)
N_val = [(x - xe(2)) .* (x - xe(3)) / ((xe(1) - xe(2)) * (xe(1) - xe(3)));
(x - xe(1)) .* (x - xe(3)) / ((xe(2) - xe(1)) * (xe(2) - xe(3)));
(x - xe(1)) .* (x - xe(2)) / ((xe(3) - xe(1)) * (xe(3) - xe(2)))];
end
% Derivative of shape functions
function dNdx_val = dNdx(x, xe)
dNdx_val = [(2*x - xe(2) - xe(3)) / ((xe(1) - xe(2)) * (xe(1) - xe(3)));
(2*x - xe(1) - xe(3)) / ((xe(2) - xe(1)) * (xe(2) - xe(3)));
(2*x - xe(1) - xe(2)) / ((xe(3) - xe(1)) * (xe(3) - xe(2)))];
end
Syntax error at line 52: Incorrect dimensions for raising a matrix to a power. Check that the matrix is square and the power is a scalar. To operate on each element of the matrix individually, use POWER (.^) for elementwise power.
% Example inputs before calling the function
ne = 10;
nn = 2*ne + 1;
mesh.x = linspace(0, 6, nn);
mesh.conn = [1:2:nn-2; 2:2:nn-1; 3:2:nn];
f = @(x) 1.0./((x-3).^2+0.2);
dfdx = @(x) -2.0*(x-3.0) ./ ((x-3).^2 + 0.2).^2;
d = f(mesh.x)';
0 commentaires
Réponses (1)
Walter Roberson
le 29 Fév 2024
Déplacé(e) : Walter Roberson
le 29 Fév 2024
% Example inputs before calling the function
ne = 10;
nn = 2*ne + 1;
mesh.x = linspace(0, 6, nn);
mesh.conn = [1:2:nn-2; 2:2:nn-1; 3:2:nn];
f = @(x) 1.0./((x-3).^2+0.2);
dfdx = @(x) -2.0*(x-3.0) ./ ((x-3).^2 + 0.2).^2;
d = f(mesh.x)';
[E1,E2] = spand_hw7(mesh, d, f, dfdx)
function [e1, e2] = spand_hw7(mesh, d, f, dfdx)
% Check if input arguments are provided
if nargin < 4
error('Insufficient input arguments. Please provide all required inputs.');
end
% Initialize error norms
e1 = 0;
e2 = 0;
% Define Gauss quadrature points and weights
x_quad = [-sqrt(5 + 2*sqrt(10/7))/3, 0, sqrt(5 + 2*sqrt(10/7))/3];
w_quad = [5/9, 8/9, 5/9];
% Loop over elements
for el = 1:size(mesh.conn, 2)
% Element nodes
nodes = mesh.conn(:, el);
% Element coordinates
xe = mesh.x(nodes);
% Element displacements
de = d(nodes)
% Jacobian matrix
J = (xe(end) - xe(1)) / 2;
% Initialize element error norms
e1_el = 0;
e2_el = 0;
% Loop over quadrature points
for q = 1:length(x_quad)
% Quadrature point
xq = (xe(end) + xe(1)) / 2 + x_quad(q) * J;
% Interpolated solution at quadrature point
Nxq = N(xq, xe);
whos Nxq
u_interp = sum(N(xq, xe) .* de');
% Exact solution and its derivative at quadrature point
u_exact = f(xq);
du_exact = dfdx(xq);
whos u_exact u_interp
% Compute L2 error norm
e1_el = e1_el + w_quad(q) * (u_exact - u_interp)^2;
% Compute energy error norm
e2_el = e2_el + w_quad(q) * sum((du_exact - de' .* dNdx(xq, xe)).^2);
end
% Add element error norms to total error norms
e1 = e1 + e1_el * J;
e2 = e2 + e2_el * J;
end
% Normalize error norms
e1 = sqrt(e1);
e2 = sqrt(e2);
end
% Shape functions
function N_val = N(x, xe)
N_val = [(x - xe(2)) .* (x - xe(3)) / ((xe(1) - xe(2)) * (xe(1) - xe(3)));
(x - xe(1)) .* (x - xe(3)) / ((xe(2) - xe(1)) * (xe(2) - xe(3)));
(x - xe(1)) .* (x - xe(2)) / ((xe(3) - xe(1)) * (xe(3) - xe(2)))];
end
% Derivative of shape functions
function dNdx_val = dNdx(x, xe)
dNdx_val = [(2*x - xe(2) - xe(3)) / ((xe(1) - xe(2)) * (xe(1) - xe(3)));
(2*x - xe(1) - xe(3)) / ((xe(2) - xe(1)) * (xe(2) - xe(3)));
(2*x - xe(1) - xe(2)) / ((xe(3) - xe(1)) * (xe(3) - xe(2)))];
end
1 commentaire
Walter Roberson
le 29 Fév 2024
u_interp = sum(N(xq, xe) .* de');
N(xq, xe) is 3 x 1
de is 3 x 1
de' is 1 x 3
3 x 1 .* 1 x 3 gives 3 x 3
sum(3 x 3) gives 1 x 3
So u_interp comes out 1 x 3.
Voir également
Catégories
En savoir plus sur Number Theory dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!