how to ues the exponentials and derivatives in bvp4c

2 vues (au cours des 30 derniers jours)
Syed Mohiuddin
Syed Mohiuddin le 14 Mar 2024
Déplacé(e) : Torsten le 16 Mar 2024
I have a coupled non-linear differential equations
u''-b1*(t')*(u')+(1+b1*t)*[G1*F1*t+G2*F1*p-F3*P]=0;
t''-b2*(t')^2+B*F6*(u')^2+(b2-b1)*t*B*F6*(u')^2-b2*b1*B*F6*t^2*(u')^2=0;
p''- A*p=0
and the boundary conditions are
u=0,t=1+m,p=1+n at y=-1 and u=0,t=1,p=1 at y=1.
The code is:
clc;
p=0.01;
Betaf= 207;
Betas = 17;
Beta = 0.5;
kof = 0.613;
kos = 400;
m = -1;
b2 = 0.5;
b1 = 0.5;
G1 = 5;
G2 = 5;
A = 0.5;
Rhof = 997.1;
Rhos = 8933;
P1 = 0.5;
n=0.5;
B=0.01;
A1 = (1-p).^2.5;
A2 = 1/(1 + 1/Beta);
A3 = (1-p)+p.*((Rhos.*Betas)./(Rhof.*Betaf));
F1 = A2.*A3;
F3 = A1.*A2;
F4 = (kos + 2*kof - 2*p.*(kof - kos))/(kos + 2*kof + p.*(kof - kos));
F5 = (1 + 1/Beta)./A1;
F6 = F5./F4;
dydx=@(x,y)[y(4);
y(5);
y(6);
(b1.*y(4).*y(5)-(1+b1.*y(2)).*(G1.*F1.*y(2)+G2.*F1.*y(3)-F3.*P1));
b2.*y(5).^2-B.*F6.*y(4).^2-(b2-b1).*y(2).*B.*F6.*y(4).^2+b2.*b1.*B.*F6.*y(2).^2*y(4).^2;
A.*y(3)];
BC=@(ya,yb)[ya(1);yb(1);ya(2)-(1+m);yb(2)-1.0;ya(3)-(1+n);yb(3)-1.0];
yinit=[0.01;0.01;0.01;0.01;0.01;0.01];
solinit=bvpinit(linspace(-1,1,50),yinit);
S=bvp4c(dydx,BC,solinit)
I need to find T1= e^(-b1*(1+m))*(du/dy), here (du/dy) should be found at y = -1
T2= e^(-b1)*(du/dy), here (du/dy) should be found at y = 1
N1= -(1+b2*(1+m))*(dt/dy), here (dt/dy) should be found at y = -1
N1= -(1+b2)*(dt/dy), here (dt/dy) should be found at y = 1
how to write T1,T2,N1,N2 in the program
Please help me to find these values
Thank you

Réponse acceptée

Torsten
Torsten le 16 Mar 2024
Modifié(e) : Torsten le 16 Mar 2024
yp1 = deval(S,1)
ym1 = deval(S,-1);
T1= exp(-b1*(1+m))*ym1(4);
T2= exp(-b1)*yp1(4);
N1= -(1+b2*(1+m))*ym1(5);
N2= -(1+b2)*yp1(5)

Plus de réponses (0)

Catégories

En savoir plus sur Biotech and Pharmaceutical dans Help Center et File Exchange

Produits


Version

R2023b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by