Non linear fit extremely bad : what am I doing wrong ?
7 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
Nassim Mhammedi
le 14 Mar 2024
Commenté : Nassim Mhammedi
le 15 Mar 2024
Hello everybody,
I've spent my evening trying to understand why the nonlinear fit was so bad with my data and I couldn't find why.
I tried many different options, like the 'fit' function, 'fminsearsh', the fitting curve tool, etc...
For some reasons, the fit is OK only if my starting points are close from the real coeff at 0.1% ...
What am I doing wrong ? 1.1 isn't THAT far from 1. (same problem without the constant 'a')
Thank you for your help,
close all
clear all
rng('default')
t = 0:0.02:10; x = t.*sin(2*pi*1*t) + 0.1*randn(1, length(t)); % x*sin(x) with noise
x = x'; t = t';
% fitting part
x0 = [0 1.1];
fitfun = fittype( @(a,b,x) a+x.*sin(2*pi*b*x) );
[fitted_curve,gof] = fit(t,x,fitfun,'StartPoint',x0)
0 commentaires
Réponse acceptée
Matt J
le 14 Mar 2024
Modifié(e) : Matt J
le 15 Mar 2024
There are ways to derive an accurate x0 more systematically, e.g.,
rng('default')
t = 0:0.02:10; x = t.*sin(2*pi*1*t) + 0.1*randn(1, length(t)); % x*sin(x) with noise
x = x'; t = t';
%Coarse fit
a0=mean(x);
I=t>=1;
z=(x(I)-a0)./t(I); %Ideally, z would be purely sinusoidal
cfit=fit(t(I),z,'fourier1');
% Fine fit
x0 = [a0 cfit.w/2/pi];
fitfun = fittype( @(a,b,x) a+x.*sin(2*pi*b*x) );
[cfit,gof] = fit(t,x,fitfun,'StartPoint',x0),
plot(cfit,t,x)
Plus de réponses (0)
Voir également
Catégories
En savoir plus sur Linear and Nonlinear Regression dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!
