Vector sliding average over different number of points

3 vues (au cours des 30 derniers jours)
LH
LH le 20 Mar 2024
Modifié(e) : Dyuman Joshi le 20 Mar 2024
Hi all,
I have a number of blocks, to be exact, and inside each block there is a certain number of points. The number of points in each block are defined within vector . The sum of these points is equal to .
I have a vector A with a size of and I want to take its average over the number of points in each block. In other words, I want to construct a vector with size where each element of the averaged vector represents the average of points in each block. Clearly my code is not doing this. Here is my code attempt:
close all;
clear all;
%number of points in each block
Ns = [4 2 2 1 3 1 1 2 3 1 1 2 1 2 3 1]; %sum of these points = 30. Number of blocks=16
%--------
%vector to be averaged over
A = [4.5 2 3 1.5 2.5 2.5 3 2 4.5 2 3 1.5 2.5 2.5 3 2 ...
4.5 2 3 1.5 2.5 2.5 3 2 3 1.5 2.5 2.5 3 2]; %vector size = 1x30
%visuliase it
figure;
subplot(1,2,1)
plot(A,'b')
xlabel('No of points')
ylabel('A')
hold on
%--------
%averaged vector
%initilaise the starting point
startrho0point = 1;
for indcell = 1:numel(Ns)
%calculate the sliding averge over the number of points in each block
A_ave(indcell) = sum(A(startrho0point:Ns(indcell)))/Ns(indcell);
%re-initilise the starting point so the next iteration starts from the
%last point reached in this current iteration
startrho0point = Ns(indcell)+1;
end
%visualise the average
subplot(1,2,2)
plot(A_ave,'k')
xlabel('No of blocks')
ylabel('A_{ave}')
%--------
Any help would be appreciated.
Thanks.

Réponse acceptée

Dyuman Joshi
Dyuman Joshi le 20 Mar 2024
Modifié(e) : Dyuman Joshi le 20 Mar 2024
Here's a vectorized method -
%number of points in each block
Ns = [4 2 2 1 3 1 1 2 3 1 1 2 1 2 3 1]; %sum of these points = 30. Number of blocks=16
%--------
%vector to be averaged over
A = [4.5 2 3 1.5 2.5 2.5 3 2 4.5 2 3 1.5 2.5 2.5 3 2 ...
4.5 2 3 1.5 2.5 2.5 3 2 3 1.5 2.5 2.5 3 2]; %vector size = 1x30
%Groups to distribute indices into
vec = [1 cumsum(Ns)]
vec = 1x17
1 4 6 8 9 12 13 14 16 19 20 21 23 24 26 29 30
%discretize the indices (of each element in A) into groups
%note that numel(A)==sum(Ns)
idx = discretize(1:sum(Ns), vec, 'IncludedEdge', 'Right')
idx = 1x30
1 1 1 1 2 2 3 3 4 5 5 5 6 7 8 8 9 9 9 10 11 12 12 13 14 14 15 15 15 16
So, the 1st 4 elements are in the group 1, 5th and 6th elements are in group 2 and so on.
%Find the mean accordingly -
A_ave = accumarray(idx.', A.', [], @mean).'
A_ave = 1x16
2.7500 2.5000 2.5000 4.5000 2.1667 2.5000 2.5000 2.5000 3.1667 1.5000 2.5000 2.7500 2.0000 2.2500 2.6667 2.0000
%visuliase it
figure;
subplot(1,2,1)
plot(A,'b')
xlabel('No of points')
ylabel('A')
%visualise the average
subplot(1,2,2)
plot(A_ave,'k')
xlabel('No of blocks')
ylabel('A_{ave}')
%--------

Plus de réponses (0)

Catégories

En savoir plus sur Lighting, Transparency, and Shading dans Help Center et File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by