ODE45 and dsolve result difference

18 vues (au cours des 30 derniers jours)
Bohan Li
Bohan Li le 30 Mar 2024
Modifié(e) : Sam Chak le 30 Mar 2024
Hi there! I am tring to solve a system of differential equations using both ode45 and dsolve. However, the outputs graph of both methods are very different.
Here's the ode45's code:
clear
clc
% Parameter
k1 = 1000000;
k2 = 10;
k3 = 1000000;
k4 = 10;
A = 0.00001;
B = 0.00002;
alpha = 1.5;
% Initial Condition and Time Range
y0 = [0; 0; 0; 1 ]; % Initial Condition
tspan = [0 0.5]; % Time Range
% Solving System of DE
[t, y] = ode45(@(t,y) [k1*A*alpha*y(3) - k2*y(1) + k3*alpha*B*y(2) - k4*y(1);
k1*A*y(4) - k2*y(2) - k3*alpha*B*y(2) + k4*y(1);
-k1*A*alpha*y(3) + k2*y(1) + k3*B*y(4) - k4*y(3);
-k1*A*y(4) + k2*y(2) - k3*B*y(4) + k4*y(3)], tspan, y0);
Then the dsolve code:
syms v(t) y(t) w(t) z(t)
% Parameter
k1 = 1000000;
k2 = 10;
k3 = 1000000;
k4 = 10;
A = 0.00001;
B = 0.00002;
alpha = 1.5;
% Defining System of Differential Equations
eqns = [
diff(y) == k1*A*alpha*z - k2*y + k3*alpha*B*v - k4*y,
diff(v) == k1*A*w - k2*v - k3*alpha*B*v + k4*y,
diff(w) == -k1*A*alpha*z + k2*y + k3*B*w - k4*z,
diff(z) == -k1*A*w + k2*v - k3*B*w + k4*z
];
initCond = [y(0) == 0, v(0) == 0, w(0) == 1, z(0) == 0];
% Solving DEs
[vSol(t), ySol(t), wSol(t), zSol(t)] = dsolve(eqns,initCond);
% Showing Results
v = vpa(vSol(t))
y = vpa(ySol(t))
w = vpa(wSol(t))
z = vpa(zSol(t))
% Plotting the graph
fplot(v, [0, 0.5], 'LineWidth', 2);
hold on;
fplot(y, [0, 0.5], 'LineWidth', 2);
fplot(w, [0, 0.5], 'LineWidth', 2);
fplot(z, [0, 0.5], 'LineWidth', 2);
xlabel('Time (t)');
ylabel('Value');
legend('v(t)', 'y(t)', 'w(t)', 'z(t)');
hold off;
For clarification, y(1), y(2), y(3) and y(4) correspond to, respetively, y, v, z, w.
Graph-wise. ode45 and dsolve's graph are, respectively,
and .

Réponse acceptée

Sam Chak
Sam Chak le 30 Mar 2024
Modifié(e) : Sam Chak le 30 Mar 2024
The order of the state variables between and is swapped in the symbolic approach.
syms v(t) y(t) w(t) z(t)
% Parameter
k1 = 1000000;
k2 = 10;
k3 = 1000000;
k4 = 10;
A = 0.00001;
B = 0.00002;
alpha = 1.5;
% Defining System of Differential Equations
eqns = [
diff(y) == k1*A*alpha*w - k2*y + k3*alpha*B*v - k4*y,
diff(v) == k1*A*z - k2*v - k3*alpha*B*v + k4*y,
diff(w) == -k1*A*alpha*w + k2*y + k3*B*z - k4*w,
diff(z) == -k1*A*z + k2*v - k3*B*z + k4*w
];
% [diff(y) == k1*A*alpha*y(3) - k2*y(1) + k3*alpha*B*y(2) - k4*y(1);
% diff(v) == k1*A*y(4) - k2*y(2) - k3*alpha*B*y(2) + k4*y(1);
% diff(w) == -k1*A*alpha*y(3) + k2*y(1) + k3*B*y(4) - k4*y(3);
% diff(z) == -k1*A*y(4) + k2*y(2) - k3*B*y(4) + k4*y(3)];
initCond = [y(0) == 0, v(0) == 0, w(0) == 0, z(0) == 1];
% Solving DEs
[vSol(t), ySol(t), wSol(t), zSol(t)] = dsolve(eqns,initCond);
% Showing Results
v = vpa(vSol(t));
y = vpa(ySol(t));
w = vpa(wSol(t));
z = vpa(zSol(t));
% Plotting the graph
hold on;
fplot(w, [0, 0.5], 'LineWidth', 2);
fplot(v, [0, 0.5], 'LineWidth', 2);
fplot(y, [0, 0.5], 'LineWidth', 2);
fplot(z, [0, 0.5], 'LineWidth', 2);
xlabel('Time (t)');
ylabel('Value');
legend('w(t)', 'v(t)', 'y(t)', 'z(t)');
hold off; grid on

Plus de réponses (0)

Catégories

En savoir plus sur Symbolic Math Toolbox dans Help Center et File Exchange

Produits


Version

R2024a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by