How to connect a 1d convolution layer after a LSTM layer with output mode "last"?

4 vues (au cours des 30 derniers jours)
Yufan
Yufan le 7 Avr 2024
I am working on classify sEMG data, and I want to build a LSTM-CNN network. I want to first employ a LSTM layer and take the last output as the input of a 1D convolution layer.
layers = [ ...
sequenceInputLayer(sEMG_channels)
lstmLayer(numHiddenUnits,'OutputMode','sequence')
lstmLayer(numHiddenUnits,'OutputMode','last')
convolution1dLayer(3,25,'Padding','same')
batchNormalizationLayer
reluLayer
dropoutLayer(0.4)
convolution1dLayer(3,10,'Padding','same')
batchNormalizationLayer
reluLayer
fullyConnectedLayer(23)
softmaxLayer
classificationLayer];
However, when I run it. It returns that the convolution1dLayer has 0 temporal dimension and 0 spatial dimension.
my input data XTrain is a 1000*1 cell and in each cell is a 48*30000 double matrix which means that my sEMG data has 48 channels and 30000 time points.
What is the output of lstmLayer(numHiddenUnits,'OutputMode','last') like?
how can i connect LSTM with CNN?
  3 commentaires
Yufan
Yufan le 8 Avr 2024
Modifié(e) : Yufan le 8 Avr 2024
Thank you for answer my question!
But adding
reshape([1, 1, numHiddenUnits])
Error using reshape
Not enough input arguments.
does not work! There is not enough input arguments.
how can i convey the output of LSTM layer into the reshape layer?
I want to conduct a network like this.
Manikanta Aditya
Manikanta Aditya le 8 Avr 2024
layers = [ ...
sequenceInputLayer(48) % Assuming sEMG_channels = 48
lstmLayer(numHiddenUnits, 'OutputMode', 'last')
reshapeLayer([1 1 numHiddenUnits],'Name','reshape') % Reshape LSTM output to have a spatial dimension
convolution1dLayer(3, 25, 'Padding', 'same')
batchNormalizationLayer
reluLayer
dropoutLayer(0.4)
convolution1dLayer(3, 10, 'Padding', 'same')
batchNormalizationLayer
reluLayer
fullyConnectedLayer(23)
softmaxLayer
classificationLayer];

Connectez-vous pour commenter.

Réponses (0)

Catégories

En savoir plus sur AI for Signals dans Help Center et File Exchange

Produits


Version

R2023b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by