Would you like guidance on how to plot the Bifurcation diagram of the van der Pol–Mathieu–Duffing oscillator against the excitation frequency Omega around principal parametric
3 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
EQ1=diff(x(t), t, t)+(-alpha+beta*x(t)^2)*(diff(x(t), t))+(omega[0]^2-mu*cos(2*Omega*t))*(x(t)+lambda*x(t)^3) = 0;
with :
alpha = 0.1e-1;
beta = 0.5e-1;
mu = 0.2;
lambda = 0.1;
omega[0] = 1;
a bifurcation diagram (Fig) plotted based on the direct numerical simulation of EQ1. The solution is computed starting from various basins of attraction, and the transient response is neglected by the rejection of 200 periods.
![](https://www.mathworks.com/matlabcentral/answers/uploaded_files/1663396/image.png)
0 commentaires
Réponses (0)
Voir également
Catégories
En savoir plus sur Numerical Integration and Differential Equations dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!