integrate for long equation

15 vues (au cours des 30 derniers jours)
GUILU
GUILU le 10 Avr 2024
Modifié(e) : Sam Chak le 13 Avr 2024
can someone help me check my code , because i get the answer is not i expected. thanks
the orignal equation is:
code
syms p c A H T k z d x w t c2 v u pi
% Define symbolic expressions for v and u
v_expr = ((pi*H)/T)*(cosh(k*(z+d))/sinh(k*d))*cos(k*x-w*t);
u_expr = ((2*pi^2*H)/T^2)*(cosh(k*(z+d))/sinh(k*d))*sin(k*x-w*t);
% Define f using the symbolic expressions for v and u
f = p*(1+c)*A*u_expr + (1/2)*p*c2*v_expr*abs(v_expr);
% Compute the integral of f with respect to z
F = int(f,z)
  7 commentaires
GUILU
GUILU le 10 Avr 2024
thats what i get now
F =
piecewise(in((k*x - t*w)/pi - 1/2, 'integer') | H == 0 | cosh(k*(d + z)) == 0 | pi == 0, -(A*H*p*pi^2*sin(k*x - t*w)*sin(k*(d + z)*1i)*(c + 1)*2i)/(T^2*k*sinh(d*k)), 0 < H*pi*cos(k*x - t*w)*cosh(k*(d + z)) & ~in((k*x - t*w)/pi - 1/2, 'integer') & cosh(k*(d + z)) ~= 0, - (p*pi^2*((A*H*sin(k*x - t*w)*sin(k*(d + z)*1i)*(c + 1)*16i)/T^2 - (H^2*c2*sin(k*(d + z)*2i)*(sin(k*x - t*w)^2 - 1)*1i)/(T*abs(sin(d*k*1i))*abs(T)))*1i)/(8*k*sin(d*k*1i)) - (H^2*c2*p*pi^2*(sin(k*x - t*w)^2 - 1)*(d + z)*1i)/(4*T*abs(sin(d*k*1i))*sin(d*k*1i)*abs(T)), H*pi*cos(k*x - t*w)*cosh(k*(d + z)) < 0 & ~in((k*x - t*w)/pi - 1/2, 'integer') & cosh(k*(d + z)) ~= 0, - (p*pi^2*((A*H*sin(k*x - t*w)*sin(k*(d + z)*1i)*(c + 1)*16i)/T^2 + (H^2*c2*sin(k*(d + z)*2i)*(sin(k*x - t*w)^2 - 1)*1i)/(T*abs(sin(d*k*1i))*abs(T)))*1i)/(8*k*sin(d*k*1i)) + (H^2*c2*p*pi^2*(sin(k*x - t*w)^2 - 1)*(d + z)*1i)/(4*T*abs(sin(d*k*1i))*sin(d*k*1i)*abs(T)), ~in((k*x - t*w)/pi - 1/2, 'integer') & cosh(k*(d + z)) ~= 0 & ~in(H*pi*cos(k*x - t*w)*cosh(k*(d + z)), 'real'), int((2*A*H*p*pi^2*sin(k*x - t*w)*cosh(k*(d + z))*(c + 1))/(T^2*sinh(d*k)) + (H*c2*p*pi*abs(H*pi*cos(k*x - t*w)*cosh(k*(d + z)))*cos(k*x - t*w)*cosh(k*(d + z)))/(2*T*abs(sinh(d*k))*sinh(d*k)*abs(T)), z))
Aquatris
Aquatris le 10 Avr 2024
This is missing the D term:
f = p*(1+c)*A*u_expr + (1/2)*p*c2*v_expr*abs(v_expr);
So should be
f = p*(1+c)*A*u_expr + (1/2)*p*c2*v_expr*D*abs(v_expr);

Connectez-vous pour commenter.

Réponses (1)

Sam Chak
Sam Chak le 11 Avr 2024
You can DIVIDE the integrand and then CONQUER it. Once you've done that, you can validate the result by comparing it with your hand-calculated solution.
syms k z d mu1 mu2 mu3 mu4 nu1 nu2 nu3 nu4
assume(k > 0 & nu1 > 0 & nu2 > 0 & cosh(k*(z + d)) > 0)
%% Define symbolic expressions for v and u
% mu1 = (2*pi^2*H)/T^2; % constant
% mu2 = sin(k*x-w*t); % constant
% mu3 = p*(1 + c)*A; % constant
u = mu1*(cosh(k*(z + d))/sinh(k*d))*mu2
u = 
% nu1 = (pi*H)/T; % constant
% nu2 = cos(k*x-w*t); % constant
% nu3 = (1/2)*p*c2; % constant
v = nu1*(cosh(k*(z + d))/sinh(k*d))*nu2
v = 
% Define f using the symbolic expressions for v and u
f = mu3*u + nu3*v*abs(v)
f = 
% Compute the integral of f with respect to z
F = int(f, z)
F = 
F = simplify(F, 'steps', 100)
F = 
  2 commentaires
GUILU
GUILU le 13 Avr 2024
Thanks so much Sam
Sam Chak
Sam Chak le 13 Avr 2024
Modifié(e) : Sam Chak le 13 Avr 2024
You are welcome, @GUILU. The key is to make MATLAB easy to interpret the "integrand" so that it can perform the integral efficiently. In your case, such that .
If you find the solution helpful, please consider clicking 'Accept' ✔ on the answer and voting 👍 for it. Your support is greatly appreciated!

Connectez-vous pour commenter.

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by