Effacer les filtres
Effacer les filtres

Solve Nonlinear ODE Symbolically

5 vues (au cours des 30 derniers jours)
Jonathan Frutschy
Jonathan Frutschy le 12 Avr 2024
Déplacé(e) : Torsten le 12 Avr 2024
I have the following non-linear ODE:
I have the following ODE45 solution:
fun = @(t,X)odefun(X,K,C,M,F(t),resSize);
[t_ode,X_answer] = ode45(fun,tspan,X_0);
The input matrices are stiffness K(X(t)), damping C, mass M, and force F. The nonlinearity is introduced by the spring stiffness matrix K(X(t)), where X(t) is a vector of the displacements of masses 1&2. That is, X(t) = [x1(t); x2(t)].
I would like to solve this ODE symbolically for expressions for x1(t) and x2(t). Can this be done with either ODE45() or dsolve()? Is there another better option that I'm missing?

Réponse acceptée

Torsten le 12 Avr 2024
Déplacé(e) : Torsten le 12 Avr 2024
This is a nonlinear system of ODEs. An analytical solution with symbolic math is not possible.
The only way to solve it is numerically using one of the ODE integrators (e.g. ode45).

Plus de réponses (0)




Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by