# Solve Nonlinear ODE Symbolically

5 vues (au cours des 30 derniers jours)
Jonathan Frutschy le 12 Avr 2024
Déplacé(e) : Torsten le 12 Avr 2024
I have the following non-linear ODE:
I have the following ODE45 solution:
fun = @(t,X)odefun(X,K,C,M,F(t),resSize);
[t_ode,X_answer] = ode45(fun,tspan,X_0);
The input matrices are stiffness K(X(t)), damping C, mass M, and force F. The nonlinearity is introduced by the spring stiffness matrix K(X(t)), where X(t) is a vector of the displacements of masses 1&2. That is, X(t) = [x1(t); x2(t)].
I would like to solve this ODE symbolically for expressions for x1(t) and x2(t). Can this be done with either ODE45() or dsolve()? Is there another better option that I'm missing?
##### 0 commentairesAfficher -2 commentaires plus anciensMasquer -2 commentaires plus anciens

Connectez-vous pour commenter.

### Réponse acceptée

Torsten le 12 Avr 2024
Déplacé(e) : Torsten le 12 Avr 2024
This is a nonlinear system of ODEs. An analytical solution with symbolic math is not possible.
The only way to solve it is numerically using one of the ODE integrators (e.g. ode45).
##### 0 commentairesAfficher -2 commentaires plus anciensMasquer -2 commentaires plus anciens

Connectez-vous pour commenter.

### Catégories

En savoir plus sur Ordinary Differential Equations dans Help Center et File Exchange

R2024a

### Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by