Optimizing lsqnonlin for Nonlinear Inverse Problems: Handling Large Unknown Parameter Sizes and Measurement Datasets
6 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
Can anyone provide insights or guidance on effectively utilizing the lsqnonlin function with the Levenberg-Marquardt algorithm and Tikhonov regularization for solving a nonlinear inverse problem with a large unknown parameter size of 109 and 380 measurements? Any tips on parameter initialization, optimization options, and dealing with computational challenges would be greatly appreciated!
1 commentaire
Réponses (1)
Nipun
le 11 Juin 2024
Hi Sumithra,
I understand that you want to effectively utilize the lsqnonlin function with the Levenberg-Marquardt algorithm and Tikhonov regularization for a nonlinear inverse problem. Here are some tips:
1. Parameter Initialization:
- Provide a good initial guess to ensure faster convergence.
- Use domain knowledge or a preliminary analysis to set initial parameters.
2. Optimization Options:
- Set optimoptions for lsqnonlin to use the Levenberg-Marquardt algorithm
options = optimoptions('lsqnonlin', 'Algorithm', 'levenberg-marquardt', 'Display', 'iter');
3. Tikhonov Regularization:
- Modify the objective function to include a Tikhonov regularization term:
alpha = 0.01; % Regularization parameter
regularization = @(x) sqrt(sum(x.^2));
objective = @(x) [yourOriginalFunction(x); alpha * regularization(x)];
4. Dealing with Computational Challenges:
- Use sparse matrices if applicable.
- Ensure efficient computation by using vectorized operations.
- If the problem is large, consider breaking it into smaller subproblems or using parallel computing.
options = optimoptions('lsqnonlin', 'Algorithm', 'levenberg-marquardt', 'Display', 'iter');
alpha = 0.01; % Regularization parameter
regularization = @(x) sqrt(sum(x.^2));
objective = @(x) [yourOriginalFunction(x); alpha * regularization(x)];
x0 = ...; % Initial guess
[x, resnorm, residual, exitflag, output] = lsqnonlin(objective, x0, [], [], options);
For more details, refer to MATLAB documentation:
Hope this helps.
Regards,
Nipun
0 commentaires
Voir également
Catégories
En savoir plus sur Solver Outputs and Iterative Display dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!