A quatity is being solved by a self consistent integration
3 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
How to find Z from the below equation
here \mathcal{P} means the principal value integration. I was tried in the following way, but couldn't figure out how to solve this,
A = 2000; a = 500; tolerance = 10^-4; Z = 0;
for i = 1 : 10
result = integral(@(x) (x.^2.*((A^2+Z^2)./(A^2+((x.^2+a^2)))) .* (sqrt(x.^2+a^2).*(x.^2+a^2-Z^2)).^(-1)), 0,A, 'PrincipalValue', true);
new_Z = sqrt(result);
if abs(new_Z - Z) < tolerance
Z = new_Z;
break;
end
Z = new_Z;
end
disp(new_Z);
Thank you in advance!
2 commentaires
Réponse acceptée
Torsten
le 9 Mai 2024
Modifié(e) : Torsten
le 9 Mai 2024
format long
syms x
A = 2000;
a = 500;
b = 1000;
Z = 0;
for i=1:20
f = x^4*((A^2+Z^2)/(A^2+4*(x^2+a^2)))^4 / (sqrt(x^2+a^2)*(x^2+a^2-Z^2));
I = double(int(f,x,0,A,'PrincipalValue',true));
Zpi = sqrt(b^2-I)
Z = real(Zpi)
end
f = x^4*((A^2+Z^2)/(A^2+4*(x^2+a^2)))^4 / (sqrt(x^2+a^2)*(x^2+a^2-Z^2));
double(Z^2 - b^2 + real(int(f,x,0,A,'PrincipalValue',true)))
2 commentaires
Torsten
le 12 Mai 2024
Modifié(e) : Torsten
le 12 Mai 2024
If the values for A don't change much, you should use the result for Z of the call for A(i) as initial guess for the call with A(i+1).
Further, you could try to solve your equation directly without fixed-point iteration using the "vpasolve" function:
syms Z x
A = 2000;
a = 500;
b = 1000;
f = x^4*((A^2+Z^2)/(A^2+4*(x^2+a^2)))^4 / (sqrt(x^2+a^2)*(x^2+a^2-Z^2));
eqn = Z^2 - b^2 + real(int(f,x,0,A,'PrincipalValue',true)) == 0;
vpasolve(eqn,Z)
Plus de réponses (0)
Voir également
Catégories
En savoir plus sur Linear Algebra dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!