DDPG does not converge

2 vues (au cours des 30 derniers jours)
Esan freedom
Esan freedom le 17 Mai 2024
Commenté : Alan le 27 Juin 2024
Hello
I am using a DDPG agent that generates 4 continuous actions (2 positive values- 2negative values). The summation of 2 positive action values must be equal to the positive part of a reference value, and the summation of 2 negative action values must be equal to the negative part of the reference value. However, the agent can't learn to track the reference. I have tried different reward functions and hyperparameters, but after a while it always chooses the maximum values of defined action ranges ([-1 -1 1 1]).
Any suggestion I appreciate
open_system(mdl)
obsInfo = rlNumericSpec([2 1]);
obsInfo.Name = 'observations';
numObservations = obsInfo.Dimension(1);
actInfo = rlNumericSpec([4 1],...
LowerLimit=[-1 -1 0 0]',...
UpperLimit=[0 0 1 1]');
numActions = actInfo.Dimension(1);
%Build the environment interface object
agentblk = 'MEMG_RL/RL Agent';
env = rlSimulinkEnv(mdl,agentblk,obsInfo,actInfo);
Ts = 2e-2;
Tf = 60;
statepath = [featureInputLayer(numObservations , Name = 'stateinp')
fullyConnectedLayer(96,Name = 'stateFC1')
reluLayer
fullyConnectedLayer(74,Name = 'stateFC2')
reluLayer
fullyConnectedLayer(36,Name = 'stateFC3')];
actionpath = [featureInputLayer(numActions, Name = 'actinp')
fullyConnectedLayer(72,Name = 'actFC1')
reluLayer
fullyConnectedLayer(36,Name = 'actFC2')];
commonpath = [additionLayer(2,Name = 'add')
fullyConnectedLayer(96,Name = 'FC1')
reluLayer
fullyConnectedLayer(72,Name = 'FC2')
reluLayer
fullyConnectedLayer(24,Name = 'FC3')
reluLayer
fullyConnectedLayer(1,Name = 'output')];
critic_network = layerGraph();
critic_network = addLayers(critic_network,actionpath);
critic_network = addLayers(critic_network,statepath);
critic_network = addLayers(critic_network,commonpath);
critic_network = connectLayers(critic_network,'actFC2','add/in1');
critic_network = connectLayers(critic_network,'stateFC3','add/in2');
plot(critic_network)
critic = dlnetwork(critic_network);
criticOptions = rlOptimizerOptions('LearnRate',3e-04,'GradientThreshold',1);
critic = rlQValueFunction(critic,obsInfo,actInfo,...
'ObservationInputNames','stateinp','ActionInputNames','actinp');
%% actor
actorNetwork = [featureInputLayer(numObservations,Name = 'observation')
fullyConnectedLayer(72,Name = 'actorFC1')
reluLayer
fullyConnectedLayer(48,Name='actorFc2')
reluLayer
fullyConnectedLayer(36,Name='actorFc3')
reluLayer
fullyConnectedLayer(numActions,Name='output')
tanhLayer
scalingLayer(Name = 'actorscaling',scale = max(actInfo.UpperLimit))];
actorNetwork = dlnetwork(actorNetwork);
actorOptions = rlOptimizerOptions('LearnRate',3e-04,'GradientThreshold',1);
actor = rlContinuousDeterministicActor(actorNetwork,obsInfo,actInfo);
%% agent
agentOptions = rlDDPGAgentOptions(...
'SampleTime',Ts,...
'ActorOptimizerOptions',actorOptions,...
'CriticOptimizerOptions',criticOptions,...
'ExperienceBufferLength',1e6,...
'MiniBatchSize',128);
agentOptions.NoiseOptions.StandardDeviation = 0.1; %.07/sqrt(Ts) ;
agentOptions.NoiseOptions.StandardDeviationDecayRate = 1e-6;
maxepisodes = 5000;
maxsteps = ceil(Tf/Ts);
trainOpts = rlTrainingOptions(...
'MaxEpisodes',maxepisodes, ...
'MaxStepsPerEpisode',maxsteps, ...
'ScoreAveragingWindowLength',20, ...
'Verbose',false, ...
'Plots','training-progress',...
'StopTrainingCriteria','EpisodeCount',...
'StopTrainingValue',5000);
agent = rlDDPGAgent(actor,critic,agentOptions);
  2 commentaires
Esan freedom
Esan freedom le 20 Mai 2024
@ Emmanouil Tzorakoleftherakis
It learns and get lost again as reward plot shows.
I aapreciate at once
Alan
Alan le 27 Juin 2024
Hi Esan,
Could you provide the .slx file of the Simulink model.
Regards.

Connectez-vous pour commenter.

Réponses (0)

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by