plot the output c(t) using mathlab and show setting time on you graphf

6 vues (au cours des 30 derniers jours)
cf
cf le 26 Mai 2024
Commenté : Sam Chak le 26 Mai 2024
syms t tau;
A = [0 2; -2 -5];
B = [0; 1];
C = [2 1];
x0 = [1; 2];
Phi_t = expm(A*t);
x_h = Phi_t * x0;
u_tau = 1; % Unit step function
x_p = int(Phi_t * B, tau, 0, t);
x_t = x_h + x_p;
y_t = C * x_t;
disp('State-transition matrix Phi(t):');
State-transition matrix Phi(t):
disp(Phi_t);
fplot(Phi_t(1,1))
disp('Homogeneous solution x_h(t):');
Homogeneous solution x_h(t):
disp(x_h);
fplot(x_h)
disp('Particular solution x_p(t):');
Particular solution x_p(t):
disp(x_p);
disp('Full state vector x(t):');
Full state vector x(t):
disp(x_t);
disp('Output y(t):');
Output y(t):
disp(y_t);

Réponses (1)

Torsten
Torsten le 26 Mai 2024
Modifié(e) : Torsten le 26 Mai 2024
Use "fplot" as done in your code above.
  2 commentaires
cf
cf le 26 Mai 2024
Déplacé(e) : Sam Chak le 26 Mai 2024
A=1
B=-1
inverse laplance of 1/s=1
inverse laplance of 1/(s+5)=e^-5t
c(t)= 1+e^-5t
setting time is 0.7832
Sam Chak
Sam Chak le 26 Mai 2024
Hi @cf
The system you originally provided in your question is linear and the input signal is a unit step function. However, there is discrepancy in the results. Can you rectify the issue?
syms t tau;
A = [0 2; -2 -5];
B = [0; 1];
C = [2 1];
x0 = [1; 2];
Phi_t = expm(A*t);
x_h = Phi_t * x0;
u_tau = 1; % Unit step function
x_p = int(Phi_t * B, tau, 0, t)
x_p = 
x_t = x_h + x_p;
y_t = C * x_t;
% disp('State-transition matrix Phi(t):');
% disp(Phi_t);
% fplot(Phi_t(1,1))
%
% disp('Homogeneous solution x_h(t):');
% disp(x_h);
% % fplot(x_h)
%
% disp('Particular solution x_p(t):');
% disp(x_p);
% disp('Full state vector x(t):');
% disp(x_t);
disp('Output y(t):');
Output y(t):
disp(y_t);
figure
fplot(y_t, [0, 6]), hold on
%% parameters
A = [0, 2; -2, -5];
B = [0; 1];
C = [2, 1];
x0 = [1; 2]; % initial values: x1(0) = 1, x2(0) = 2
u_tau = 1; % Unit step function
%% state-space representation
function [dxdt, y] = stateSpace(t, x, A, B, C, u_tau)
dxdt = A*x + B*u_tau; % state equation
y = C*x; % output equation, check: y(0) = 2*x1(0) + 1*x2(0) = 4
end
%% call ode45 solver
tspan = [0, 6];
[t, x] = ode45(@(t, x) stateSpace(t, x, A, B, C, u_tau), tspan, x0);
[~, y] = stateSpace(t', x', A, B, C, u_tau);
plot(t, y, '-.', 'linewidth', 1.5, 'color', '#FA477A'), grid on, xlabel('t'), ylabel('y(t)')
legend('Manual Integration', 'Numerical Integration')
title('Output response, y(t)')

Connectez-vous pour commenter.

Catégories

En savoir plus sur Symbolic Math Toolbox dans Help Center et File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by