Complex value computed by model function, fitting cannot continue. Try using or tightening upper and lower bounds on coefficients.

30 vues (au cours des 30 derniers jours)
Hello, I really need some help on data fitting. I would like to fit my data custom equation:a+b*exp((-(x/c))^d. I try to use upper and lower bounds on coefficients but it does not work.If anyone can tell me what to do to resolve this I would greatly appreciate it.
  4 commentaires
Torsten
Torsten le 3 Juin 2024
Because of the error message and the overfitting, I suspect
a+b*exp(-(x/c)^d)
instead of
a+b*exp((-(x/c))^d
is meant.
Daniel Jiao
Daniel Jiao le 4 Juin 2024
@Torsten Thanks lot, I'll check it. This equation is given by an article, so it's a theoretical formula, but yeah, I'll check whether it's correct, thanks so much!

Connectez-vous pour commenter.

Réponse acceptée

Matt J
Matt J le 3 Juin 2024
Modifié(e) : Matt J le 3 Juin 2024
fminspleas from this FEX download,
is helpful for these kinds of models.
[x,y]=readvars('200ms_SD.xlsx');
flist={1,@(c,x) exp(-c*x)};
[c,ab]=fminspleas(flist,+1,x,y);
a=ab(1);
b=ab(2);
f=@(x)a+b*exp(-c*x);
xf=linspace(min(x),max(x));
plot(x,y,'.c',xf,f(xf)); axis padded; legend Data Fit
  3 commentaires
Daniel Jiao
Daniel Jiao le 4 Juin 2024
Thanks a lot for this answer, it really give me some ideas and confidence, as the comment you mentioned above, I just try to use fit() and fittype(), like:
ft = fittype( 'a+b*exp((-(x/c))^d)', 'independent', 'x', 'dependent', 'y' );
fitobject = fit(x,y,ft,'lower',[-1,0,0.002,0],'upper',[0,3,0.005,1]);
and I also use the curve fitting toolbox. Just some basic way, since it was first time I try to do curve fitting.
Anyway that's really helpful! Thanks so much for that, and I'll try it!
Matt J
Matt J le 4 Juin 2024
You're welcome, but when you've decided upon a solution, please Accept-click the appropriate answer.

Connectez-vous pour commenter.

Plus de réponses (1)

Mathieu NOE
Mathieu NOE le 3 Juin 2024
hello
a very basic code using only fminsearch (no toolbox required )
I preferred to smooth a bit your data (otherwise it looks more like a cloud) but it's not absolutely needed - but you end up with other parameters after the fit
hope it helps !
data = readmatrix('200ms_SD.xlsx');
x = data(:,1);
y = data(:,2);
[x,ia,ic] = unique(x);
y = y(ia);
ys = smoothdata(y,'gaussian',100);
% curve fit using fminsearch
% model a+b*exp((-(x/c))^d
f = @(a,b,c,d,x) a + b.*exp(-(x/c).^d);
obj_fun = @(params) norm(f(params(1), params(2), params(3), params(4),x)-ys);
sol = fminsearch(obj_fun, [ys(end),(max(ys)-ys(end)),1,1]);
Exiting: Maximum number of function evaluations has been exceeded - increase MaxFunEvals option. Current function value: 1.159572
a_sol = sol(1)
a_sol = 0.0903
b_sol = sol(2)
b_sol = 0.5209
c_sol = sol(3)
c_sol = 0.0028
d_sol = sol(4)
d_sol = 0.1143
y_fit = f(a_sol, b_sol, c_sol, d_sol, x);
R2 = my_R2_coeff(ys,y_fit); % correlation coefficient
plot(x,y, 'k.',x,ys,'r',x, y_fit,'b-')
title([' Fit / R² = ' num2str(R2) ], 'FontSize', 15)
legend('raw data','smoothed','fit');
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function R2 = my_R2_coeff(data,data_fit)
% R2 correlation coefficient computation
% The total sum of squares
sum_of_squares = sum((data-mean(data)).^2);
% The sum of squares of residuals, also called the residual sum of squares:
sum_of_squares_of_residuals = sum((data-data_fit).^2);
% definition of the coefficient of correlation (R squared) is
R2 = 1 - sum_of_squares_of_residuals/sum_of_squares;
end
  1 commentaire
Daniel Jiao
Daniel Jiao le 4 Juin 2024
Hello,thanks a lot for the answer, it's really helpful! I'll try to read and try the code you offered! My original code is much more basic, since I'm just a beginner.
Thanks again that I really got some knowledge from you!

Connectez-vous pour commenter.

Catégories

En savoir plus sur Get Started with Curve Fitting Toolbox dans Help Center et File Exchange

Produits

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by