Solve an ODE on a torus
7 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
I have an ODE that I need to solve on a torus. Namely, I have many "point charges" that I need to put on the square , and I need to study a motion under the action of said points. The problem is, I'd really like to set it up as if the square were a torus, so that when I exit from one side I pop up from the opposite one. However, I do not know how to impose this. Notice, also, that I am using the brand new tool "Solve" from the latest release since it seems to speed things up quite a bit (basically because MATLAB knows better than me what method to use...).
0 commentaires
Réponses (1)
John D'Errico
le 5 Juin 2024
Modifié(e) : John D'Errico
le 5 Juin 2024
Simple enough. Just transform the problem. So if [u,v] live on [0,1]x[0,1], then
s = (cos(2*pi*u)+1)/2
t = (cos(2*pi*v)+1)/2
also lives on [0,1]x[0,1], but (s,t) now behave as you wish.
Voir également
Catégories
En savoir plus sur Ordinary Differential Equations dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!