- Are you timing the entire parfor block? e.g. tic, parfor ... end, toc
- What is the spread of timings? Is it usually 14 seconds, and occasionally up to 110 seconds?
- Machine information (operating system), and MATLAB Release.
Parfor Execution time variation
3 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
Anshika Goel
le 6 Juin 2024
Commenté : Anshika Goel
le 21 Août 2024
Hi,
I am using parfor for reading 600 .raw files.
c=zeros(1536,1536,600,'uint16');
parpool('threads',4);
parfor i=1:600
fileName=[folder,'/',fileList(i).name];
a=fopen(fileName,'r');
Z=fread(a,[1536 1536],'uint16');
fclose(a);
c(:,:,i)=Z;
end
However, I am observing significant variability in the execution time, which ranges from 14 seconds to 110 seconds across different runs.
Why is this discrepancy occurring? Is there a way to achieve more consistent execution times?
4 commentaires
Christopher Mirfin
le 12 Juin 2024
Do you observe the same variability when running with a standard for-loop, or a process-based pool parpool("Processes",4) ?
Also, are you reading from your local hard drive or a network location?
Réponse acceptée
Swastik Sarkar
le 21 Août 2024
I also have an Intel Xeon processor (4 cores) with 16GB RAM. I executed your code after generating 600 files as follows:
matrix = uint16(ones(1536));
folder = 'nums';
for i=1:600
fid = fopen([folder '/' num2str(i)], 'w');
mat = matrix .* i;
fwrite(fid, mat, 'uint16');
fclose(fid);
end
In my tests, the variability in execution time was not as significant as you mentioned; it ranged from 189 seconds to 200 seconds. the main bottleneck is likely due to file I/O operations.
To optimize execution time, consider performing file reads asynchronously. I developed the following code using “parfeval” to read 600 files asynchronously:
c = zeros(1536, 1536, 600, 'uint16');
folder = "nums";
pool = gcp('nocreate');
if isempty(pool)
pool = parpool('threads');
end
futures = parallel.FevalFuture.empty(600, 0);
for i = 1:600
fileName = fullfile(folder, num2str(i));
futures(i) = parfeval(@readFile, 1, fileName);
end
for i = 1:600
c(:, :, i) = fetchOutputs(futures(i));
end
function Z = readFile(fileName)
a = fopen(fileName, 'r');
Z = fread(a, [1536 1536], 'uint16');
fclose(a);
end
In my tests, this approach reduced the execution time to between 14-16 seconds.
You can learn more about “parfeval” from here:
I hope this helps.
Plus de réponses (0)
Voir également
Catégories
En savoir plus sur Loops and Conditional Statements dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!