calulate the indicated mean pressure with a p-v diagramm

4 vues (au cours des 30 derniers jours)
Julian
Julian le 21 Juin 2024
Modifié(e) : Mathieu NOE le 28 Juin 2024
Hello,
I have to calculate the indicated mean pressure. I have a p-v diagramm (in the attachements). I separated the two areas by finding the intersection. But know im not sure if the polyarea() function is the correct function to calculate the two areas.
The integral i have to implement is also in the attachements
(p: pressure in the cylinder; A: piston surface; V: volume of the cylinder; s: piston travel (path) as a function of the crank angle
Thanks for help!

Réponse acceptée

Mathieu NOE
Mathieu NOE le 26 Juin 2024
Modifié(e) : Mathieu NOE le 28 Juin 2024
hello Julian
yes you can use polyarea, I believe you could also with trapz like in my example below (it uses this Fex submission : Fast and Robust Self-Intersections - File Exchange - MATLAB Central (mathworks.com))
results (two loops area) :
area = 71.3220 125.0467 (with trapz)
area2 = 72.5056 125.3691 (with polyarea)
code :
load('data.mat')
[x0,y0,segments]=selfintersect(x,y); % fex : https://fr.mathworks.com/matlabcentral/fileexchange/13351-fast-and-robust-self-intersections
figure(1)
plot(x,y,'b',x0,y0,'dr','markersize',15);
axis square
hold on
% compute area for each loop
for k = 1:numel(x0)
ind = (segments(k,1):segments(k,2));
x_tmp = x(ind);
y_tmp = y(ind);
% compute area
area(k) = trapz(x_tmp,y_tmp);
area2(k) = polyarea(x_tmp,y_tmp);
plot(x_tmp,y_tmp)
end
area
area2

Plus de réponses (0)

Catégories

En savoir plus sur Elementary Polygons dans Help Center et File Exchange

Produits


Version

R2023a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by