How to use fminunc for a 2D function composed of two functions?
3 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
I have:
and I want to minimize it on the unit square without using differentials.
I use the following code,
close all; clear; clc;
options = optimoptions(@fminunc,'Display','iter','Algorithm','quasi-newton');
xy_guess = [0,0];
[xy_opt,fval] = fminunc(@quadratic,xy_guess,options)
function f = quadratic(in)
x = in(1);
y = in(2);
f = -5.*x - 5.*y + 10.*x.^2 + 2.*x.*y
f = 1/200.*(-1000.*x - 1000.*y + 400.*x.*y + 1200.*y.^2 + 5.*cos(30.*x) + 4.*cos(80.*x.^2) + 5.*cos(30.*y) + 4.*cos(80.*y^2))
But declaring f twice does not work. How should I declare this double-function as an input for fminunc ?
Thanks!
2 commentaires
Ashutosh Thakur
le 28 Juin 2024
Hi Sergio,
With the last line of code the value of f is overwritten, and only this value is passed to the fminunc. Also I have observed that you have a constraint on the unit square. You can take advantage of the fmincon function, https://www.mathworks.com/help/optim/ug/fmincon.html, as fminunc does not have any constraint.
Can you try to use fmincon function?
Réponse acceptée
Aquatris
le 28 Juin 2024
Modifié(e) : Aquatris
le 28 Juin 2024
You dont seem to have a double function.
So here is a code to solve your problem. You have local minimas so fmincon and brute force approach gives you different results, since brute force approach is a global optimization.
f = @(x) [x(1) x(2)]*[10 2;2 6]*[x(1);x(2)]-[5 5]*[x(1);x(2)]+(cos(30*x(1))+cos(30*x(2)))/40+(cos(80*x(1)^2)+cos(80*x(2)^2))/50;
options = optimoptions(@fmincon);
%options = optimoptions(@fmincon,'Display','iter','OptimalityTolerance',1e-12);
lb = [0 0];% lower bounds
ub = [1 1];% upper bounds
x0 = [.5 .5]; % initial guess
[xSol,fval,exitflag,output] = fmincon(f,x0,[],[],[],[],lb,ub,[],options); % solve optimization
% brute force searching the entire space for min function value
x1 = 0:0.001:1;
x2 = 0:0.001:1;
[X1,X2] = meshgrid(x1,x2);
fValBrute = arrayfun(@(x1,x2)f([x1 x2]),X1,X2);
idxMin = find(fValBrute == min(fValBrute,[],'all')); % find minimum function value
% plot
contourf(X1,X2,fValBrute,150)
hold on
plot(xSol(1),xSol(2),'k*') % black star is the result of fmincon
plot(X1(idxMin),X2(idxMin),'rx') % red x is the brute force result
title({sprintf('Min function value found via fmincon: %.4f at [%.4f %.4f]',fval,xSol(1),xSol(2));
sprintf('Min function value found via brute force: %.4f at [%.4f %.4f]',fValBrute(idxMin),X1(idxMin),X2(idxMin))})
hold off
1 commentaire
Plus de réponses (0)
Voir également
Catégories
En savoir plus sur Language Fundamentals dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!