Selectin elements that satisfy a certain condition with modular arithmetic

1 vue (au cours des 30 derniers jours)
Adrian
Adrian le 9 Juil 2024
Réponse apportée : Voss le 9 Juil 2024
Suppose I have the finite field F_3={0,1,2}. Suppose I have the following equations:
1=x_1+x_4+x_5
0=x_2+x_5+x_6
0=x_3+x_4+x_6
where each x_i is a member of F_3. How Can I obtain the set of all possible combinations for the solutions of the above equations?
Thanks for any help in advance.

Réponse acceptée

Voss
Voss le 9 Juil 2024
N = 6;
m = 3;
M = dec2base(0:m^N-1,m)-'0';
idx = mod(M(:,1)+M(:,4)+M(:,5),m) == 1 ...
& mod(M(:,2)+M(:,5)+M(:,6),m) == 0 ...
& mod(M(:,3)+M(:,4)+M(:,6),m) == 0;
sol = M(idx,:);
disp(sol)
0 0 0 2 2 1 0 0 1 0 1 2 0 0 2 1 0 0 0 1 0 1 0 2 0 1 1 2 2 0 0 1 2 0 1 1 0 2 0 0 1 0 0 2 1 1 0 1 0 2 2 2 2 2 1 0 0 0 0 0 1 0 1 1 2 1 1 0 2 2 1 2 1 1 0 2 1 1 1 1 1 0 0 2 1 1 2 1 2 0 1 2 0 1 2 2 1 2 1 2 1 0 1 2 2 0 0 1 2 0 0 1 1 2 2 0 1 2 0 0 2 0 2 0 2 1 2 1 0 0 2 0 2 1 1 1 1 1 2 1 2 2 0 2 2 2 0 2 0 1 2 2 1 0 2 2 2 2 2 1 1 0

Plus de réponses (0)

Catégories

En savoir plus sur Numerical Integration and Differential Equations dans Help Center et File Exchange

Produits

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by