Mean and Standard Deviation of outputs on a neural network
5 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
I am trying to train a Bayesian neural network, and with 5 inputs and 4 outputs. In the end, I want to have a mean prediction for all the outputs and a estimate of the standard deviation. When I ran the following code, it says that the network must have an output layer. I am wondering whats incorrect. I have followed this example.
PS: I have updated the code and am using trainnet now. The error that comes now is that :Fixed sequence length training option is not supported: in Trainnet.
My utrain_load has a size 5*78739 and ytrain_load has a size 4*78739.
addpath('~\MATLAB\Examples\R2024a\nnet\TrainBayesianNeuralNetworkUsingBayesByBackpropExample')
numHiddenUnits1= 8;
numResponses = 4; % y1 y2 y3 y4
featureDimension = 5; % u1 u2 u3 u4 u5 %
% featureDimension = 4; % u1 u2 u3 u4 u5
maxEpochs = 100; % IMPORTANT PARAMETER
miniBatchSize = 512; % IMPORTANT PARAMETER
% architecture
Networklayer_h2df = [...
sequenceInputLayer(featureDimension)
fullyConnectedLayer(4*numHiddenUnits1)
reluLayer
bayesFullyConnectedLayer(4*numHiddenUnits1,Sigma1=1,Sigma2=0.5)
reluLayer
fullyConnectedLayer(8*numHiddenUnits1)
reluLayer
gruLayer(LSTMStateNum,'OutputMode','sequence',InputWeightsInitializer='he',RecurrentWeightsInitializer='he')
fullyConnectedLayer(8*numHiddenUnits1)
reluLayer
fullyConnectedLayer(4*numHiddenUnits1)
reluLayer
fullyConnectedLayer(numResponses)
bayesFullyConnectedLayer(numResponses,Sigma1=1,Sigma2=0.5)
];
% training options
options_tr = trainingOptions('adam', ...
'MaxEpochs',maxEpochs, ...
'MiniBatchSize',miniBatchSize, ...
'GradientThreshold',1, ...
'SequenceLength',8192,...
'Shuffle','once', ...
'Plots','training-progress',...
'Verbose',1, ...
'VerboseFrequency',64,...
'LearnRateSchedule','piecewise',...
'LearnRateDropPeriod',250,...
'LearnRateDropFactor',0.75,...
'L2Regularization',0.1,...
'ValidationFrequency',10,...
'InitialLearnRate', 0.001,...
'Verbose', false, ...
'ExecutionEnvironment', 'cpu', ...
'ValidationData',[{uval_load} {yval_load}],...
'OutputNetwork','best-validation-loss');
%% training and Saving model data
savename = [sprintf('%04d',MP),'_',sprintf('%04d',numHiddenUnits1),'_',sprintf('%04d',LSTMStateNum),'_',sprintf('%04d',trainingrun),'.mat'];
if do_training == true
tic
[h2df_model, h2df_model_infor] = trainnet(utrain_load,ytrain_load,Networklayer_h2df,"mse",options_tr);
toc
ElapsedTime = toc;
h2df_model_analysis = analyzeNetwork(h2df_model); % analysis including total number of learnable parameters
h2df_model_infor.ElapsedTime = ElapsedTime;
save(['../Results/h2df_model_',savename],"h2df_model")
save(['../Results/h2df_model_info_',savename],"h2df_model_infor")
save(['../Results/h2df_model_analysis_',savename],"h2df_model_analysis")
else
load(['../Results/h2df_model_',savename])
load(['../Results/h2df_model_info_',savename])
load(['../Results/h2df_model_analysis_',savename])
end
2 commentaires
Aditya
le 31 Juil 2024
@Vasu Sharma Could you provide the exact error message and the code till the line where the error hits!
Réponses (1)
Matt J
le 31 Juil 2024
Modifié(e) : Matt J
le 31 Juil 2024
You have shown the code for your network, but not how you have adapted the training code, nor the error messages. So, it calls for guesswork.
A fair guess however is that you are using the deprecated trainnetwork() function rather than trainnet() to do the training. With trainnetwork, the network must have an output layer, for example a regressionLayer or a classificationLayer which specifies the loss function to be used during training. The network in your code does not have such a layer.
Voir également
Catégories
En savoir plus sur Image Data Workflows dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!