How to Extract Delayed State Terms in a Model with Distributed Delay?
2 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
I'm working on a model with distributed delays, and I'm using the ddesd function to solve the delay differential equations. My setup involves a distributed delay, defined by:
tau = 1;
gamma = 0.5;
number_of_delays = 11; % should be odd
lags = linspace(tau-gamma,tau+gamma,number_of_delays);
tspan=[0 600];
sol=ddesd(@(t,y,Z)ddefunc(t,y,Z,lags),lags,[0.2; 0.08],tspan);
p=plot(sol.x,sol.y);
set(p,{'LineWidth'},{2;2})
title('y(t)')
xlabel('Time(days)'), ylabel('populations')
legend('x','y')
function yp = ddefunc(~,y,Z,lags)
a=0.1;
b=0.05;
c=0.08;
d=0.02;
yl1 = trapz(lags,Z(2,:));
yp = [a*y(1)-b*y(1)*yl1;
c*y(1)*y(2)-d*y(2)];
end
In the case of discrete delays, we can easily extract the delayed state terms using the deval or interp1 commands. However, I'm unsure how to proceed with extracting or examining the delayed state terms for distributed delay case.
0 commentaires
Réponse acceptée
Torsten
le 22 Août 2024
Modifié(e) : Torsten
le 22 Août 2024
So in the distributed case you want to extract
y2_delayed(t) = integral_{tau = t-1.5]^{tau = t-0.5} y2(tau) dtau
thus the term yl1 in ddefunc ?
I plotted it as "Lag term" below.
tau = 1;
gamma = 0.5;
lags = [tau-gamma;tau+gamma];
tspan = [0 600];
sol = dde23(@ddefunc,lags,[0.2; 0.08; 0.08*2*gamma],tspan,ddeset('RelTol',1e-6,'AbsTol',1e-6));
figure(1)
p = plot(sol.x,sol.y(1:2,:));
set(p,{'LineWidth'},{2;2})
title('y(t)')
xlabel('Time(days)'), ylabel('populations')
legend('x','y')
figure(2)
p = plot(sol.x,sol.y(3,:));
set(p,{'LineWidth'},{2})
title('Lag(t)')
xlabel('Time(days)'), ylabel('Lag term')
legend('Lag')
function yp = ddefunc(~,y,Z)
a=0.1;
b=0.05;
c=0.08;
d=0.02;
yp = [a*y(1)-b*y(1)*y(3);
c*y(1)*y(2)-d*y(2);
Z(2,1)-Z(2,2)];
end
Plus de réponses (1)
Torsten
le 22 Août 2024
Déplacé(e) : Torsten
le 22 Août 2024
What exactly do you want to extract ? y2, evaluated at (t-lags) ?
And you know that your equation can be solved using dde23 because you can treat
integral_{tau = t-1.5]^{tau = t-0.5} y2(tau) dtau
in the same way as I suggested here:
?
In this case, you get an equation with discrete delays of length 1.5 and 0.5.
Hint:
d/dt (integral_{tau = t-1.5]^{tau = t-0.5} y2(tau) dtau) = y2(t-0.5) - y2(t-1.5)
2 commentaires
Voir également
Catégories
En savoir plus sur Numerical Integration and Differential Equations dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!