How to update a function with output from another function?
3 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
I am trying to solve for heat transfer coefficients so that I can use them to calculate gas and tank wall temperatures. Currently, I am using constant heat transfer coefficients to enable the calculation of the desired temperatures with ode45.
% Convective heat transfer coefficients
h_in = 25; % Convective heat transfer coefficient inside the tank (W/(m^2·K))
h_out = 6; % Convective heat transfer coefficient outside the tank (W/(m^2·K))
% Solve the coupled ODEs and PDE
[t, y] = ode45(@(t, y) odes(t, y, R, C_p_gas, k_liner, k_CFRP, rho_liner, rho_CFRP, C_p_liner, C_p_CFRP, h_in, h_out, T_ambient, A_in, A_out, dx_liner, dx_CFRP, N_liner, N_CFRP, V, mdot_out), tspan, initial_conditions);
% Extract time histories for inside and outside wall temperatures
T_wall_liner_interface = y(:,3); % Inside wall temperature (first point of the liner)
T_wall_CFRP_interface = y(:,end); % Outside wall temperature (last point of the CFRP layer)
What I would like to do is to use the output temperatures from the ode45 to solve for h_in and h_out, which will in turn be used by ode45 to solve for new temperatures. The h_in and h_out calculations look like this:
function [h_in, h_out]=heat_transfer_coefficients
Di = 0.230; % Internal diameter in meters
Do = 0.279; % External diameter in meters
T_gf = 266.17; %(K) - Type III hydrogen gas T at film temp
rho_gf = 39.16; %(kg/m^3) - Type III hydrogen gas density @ T_gf
Cp_gf = 0.01514*((T_gf/100)^4.789)+1002;
mu_gf = (-4.127*10^-7)*((T_gf/100)^2)+((7.258*10^-6)*(T_gf/100))+(4.094*10^-7);
lambda_gf = ((-3.77*10^-4)*(T_gf/100)^2)+((1.004*10^-2)*(T_gf/100))-(4.776*10^-4);
beta_gf = 1/T_gf; %volumetric thermal expansion coefficient
g = 9.81; %gravitational acceleration (m/s^2)
Rai = (rho_gf^2*(Di^3)*beta_gf*g*(T_wall_liner_interface-T_gas)*Cp_gf)/(mu_gf*lambda_gf); %Rayleigh number at inner wall
if Rai < 10^8
Nu_i = 1.15*Rai.^0.22;
else
Nu_i = 0.14*Rai.^0.333;
end
ki = 168.9e3; %thermal conductivity inside tank at T_g, Type III (W/m*K)
h_in = (Nu_i*ki)/Di;
T_ambf = 279.43; %(K) - Type III
rho_ambf = 1.263; %(kg/m^3) - density @ T_ambf
c_wind = 0; %(m/s) - cross wind velocity
Cp_ambf = 0.01514*((T_ambf/100)^4.789)+1002;
mu_ambf = (-4.127*10^-7)*((T_ambf/100)^2)+((7.258*10^-6)*(T_ambf/100))+(4.094*10^-7);
lambda_ambf = ((-3.77*10^-4)*(T_ambf/100)^2)+((1.004*10^-2)*(T_ambf/100))-(4.776*10^-4);
beta_ambf = 1/T_ambf; %volumetric thermal expansion coefficient
Re_Do = (rho_ambf*c_wind*Do)/(mu_ambf);
Pr_ambf = (mu_ambf*Cp_ambf)/lambda_ambf;
if Re_Do == 0
Nu_cylforced = 0;
Nu_sphforced = 0;
else
Nu_cylforced = 0.3+((0.62*(Re_Do^0.5)*(Pr_ambf^(1/3)))/(1+(0.4/((Pr_ambf))^(2/3)))^(1/4))...
*(1+(Re_Do/282000)^5/8)^4/5;
Nu_sphforced = 2 + ((Re_Do/4)+((3*10^-4)*Re_Do^1.6))^0.5;
end
Rao = (rho_ambf^2*(Do^3)*beta_ambf*g*(T_amb-T_wall_CFRP_interface)*Cp_ambf)/(mu_ambf*lambda_ambf); %Rayleigh number at inner wall
Nu_oforced = ((Nu_cylforced*0.72)+(Nu_sphforced*0.24))/(0.72+0.24);
Nu_ofree = (0.6+((0.387*(Rao.^(1/6)))/(1+(0.559/Pr_ambf)^(9/16)).^(8/27))).^2;
Nu_o = ((Nu_ofree.^4)+(Nu_oforced^4)).^0.25;
ko = 24.84e3; %thermal conductivity outside tank at T_wo, Type III (W/m*K)
h_out = (Nu_o*ko)/Do;
end
As can be seen in the above code, the h_in and h_out calculations require T_gas, T_wall_liner interface and T_wall_CFRP_interface, which currently are being calculated after h_in and h_out. Can somebody please show me a way I can incorporate the h_in and h_out calculations into the first section of code? For ease of explanation and solving, please feel free to use your own numbers for the constants in the ode45 solver line.
1 commentaire
Réponses (2)
Aquatris
le 23 Août 2024
Here is one way iff the required variables are within the state vector 'y', then you can do:
%% change ode45 call
[t, y] = ode45(@(t, y) odes(t, y, R, C_p_gas, k_liner, k_CFRP,...
rho_liner, rho_CFRP, C_p_liner, C_p_CFRP,...
heat_transfer_coefficients(y),...% previously -> h_in, h_out,...
T_ambient, A_in, A_out, dx_liner,...
dx_CFRP, N_liner, N_CFRP, V, mdot_out), tspan, initial_conditions);
%% change odes function to allow input from heat_transfer_coefficient
function dy = odes(t, y, R, C_p_gas, k_liner, k_CFRP,...
rho_liner, rho_CFRP, C_p_liner, C_p_CFRP,...
h_in_h_out_vec,...% previously -> h_in, h_out,...
T_ambient, A_in, A_out, dx_liner,...
dx_CFRP, N_liner, N_CFRP, V, mdot_out)
h_in = h_in_h_out_vec(1);
h_out = h_in_h_out_vec(1);
%% rest your code here %%
...
end
%% change heat_transfer_coefficients function to accept input arguments
function [h_in, h_out]=heat_transfer_coefficients(y)
T_gas = y(1); % assuming it is the 1st element of your state vector, change accordingly
T_wall_liner_interface = y(3);
T_wall_CFRP_interface = y(end);
%% rest of your code %%
...
end
12 commentaires
Torsten
le 23 Août 2024
Modifié(e) : Torsten
le 23 Août 2024
% Solve the coupled ODEs and PDE
[t, y] = ode45(@(t, y) odes(t, y, R, C_p_gas, k_liner, k_CFRP, rho_liner, rho_CFRP, C_p_liner, C_p_CFRP, T_ambient, A_in, A_out, dx_liner, dx_CFRP, N_liner, N_CFRP, V, mdot_out), tspan, initial_conditions);
function dy = odes(t, y, R, C_p_gas, k_liner, k_CFRP, rho_liner, rho_CFRP, C_p_liner, C_p_CFRP, T_ambient, A_in, A_out, dx_liner, dx_CFRP, N_liner, N_CFRP, V, mdot_out)
T_gas = y(?)
T_wall_liner_interface = y(3);
T_wall_CFRP_interface = y(end);
[h_in,h_out] = heat_transfer_coefficients(T_gas,T_wall_liner_interface,T_wall_CFRP_interface)
...
end
function [h_in, h_out]=heat_transfer_coefficients(T_gas,T_wall_liner_interface,T_wall_CFRP_interface)
...
end
2 commentaires
Sam Chak
le 23 Août 2024
%% Main Script
tspan = [0 30]; % duration of simulation
y0 = 1; % initial value
[t, y] = ode45(@(t, y) ode(t, y), tspan, y0);
plot(t, y), grid on
xlabel('t'), ylabel('y')
%% The hypothetical ODE (requires numerical solution of transcendental E)
function dy = ode(t, y)
Esol= kepler(y); % numerical solution of E (by calling kepler() function)
dy = - (y - Esol); % ODE depends on the numerical solution of E
end
%% Kepler's equation (requires ODE solution y)
function Esol = kepler(M)
e = 0.5; % eccentricity of the orbit
fun = @(E) M - (E - e*sin(E)); % cannot be solved for E algebraically.
E0 = 1; % initial guess (fixed, but can be made varying)
opt = optimoptions('fsolve', 'Display', 'none');
Esol= fsolve(fun, E0, opt);
end
Sam Chak
le 23 Août 2024
The computation in the heat_transfer_coefficients() function can return values for h_in and h_out. However, you should be cautious, as certain input values can produce complex-valued solutions for h_in and h_out. Please ensure that the input values remain within the intended operating range.
%% Test 1
y = [1, 1, 1, 1];
[h_in, h_out] = heat_transfer_coefficients(y)
%% Test 2
y = [1, 2, 3, 4];
[h_in, h_out] = heat_transfer_coefficients(y)
function [h_in, h_out] = heat_transfer_coefficients(y)
% extracting data from input
T_wall_liner_interface = y(1);
T_gas = y(2);
T_amb = y(3);
T_wall_CFRP_interface = y(4);
% original code
Di = 0.230; % Internal diameter in meters
Do = 0.279; % External diameter in meters
T_gf = 266.17; %(K) - Type III hydrogen gas T at film temp
rho_gf = 39.16; %(kg/m^3) - Type III hydrogen gas density @ T_gf
Cp_gf = 0.01514*((T_gf/100)^4.789)+1002;
mu_gf = (-4.127*10^-7)*((T_gf/100)^2)+((7.258*10^-6)*(T_gf/100))+(4.094*10^-7);
lambda_gf = ((-3.77*10^-4)*(T_gf/100)^2)+((1.004*10^-2)*(T_gf/100))-(4.776*10^-4);
beta_gf = 1/T_gf; %volumetric thermal expansion coefficient
g = 9.81; %gravitational acceleration (m/s^2)
Rai = (rho_gf^2*(Di^3)*beta_gf*g*(T_wall_liner_interface-T_gas)*Cp_gf)/(mu_gf*lambda_gf); %Rayleigh number at inner wall
if Rai < 10^8
Nu_i = 1.15*Rai.^0.22;
else
Nu_i = 0.14*Rai.^0.333;
end
ki = 168.9e3; %thermal conductivity inside tank at T_g, Type III (W/m*K)
h_in = (Nu_i*ki)/Di;
T_ambf = 279.43; %(K) - Type III
rho_ambf = 1.263; %(kg/m^3) - density @ T_ambf
c_wind = 0; %(m/s) - cross wind velocity
Cp_ambf = 0.01514*((T_ambf/100)^4.789)+1002;
mu_ambf = (-4.127*10^-7)*((T_ambf/100)^2)+((7.258*10^-6)*(T_ambf/100))+(4.094*10^-7);
lambda_ambf = ((-3.77*10^-4)*(T_ambf/100)^2)+((1.004*10^-2)*(T_ambf/100))-(4.776*10^-4);
beta_ambf = 1/T_ambf; %volumetric thermal expansion coefficient
Re_Do = (rho_ambf*c_wind*Do)/(mu_ambf);
Pr_ambf = (mu_ambf*Cp_ambf)/lambda_ambf;
if Re_Do == 0
Nu_cylforced = 0;
Nu_sphforced = 0;
else
Nu_cylforced = 0.3+((0.62*(Re_Do^0.5)*(Pr_ambf^(1/3)))/(1+(0.4/((Pr_ambf))^(2/3)))^(1/4))...
*(1+(Re_Do/282000)^5/8)^4/5;
Nu_sphforced = 2 + ((Re_Do/4)+((3*10^-4)*Re_Do^1.6))^0.5;
end
Rao = (rho_ambf^2*(Do^3)*beta_ambf*g*(T_amb-T_wall_CFRP_interface)*Cp_ambf)/(mu_ambf*lambda_ambf); %Rayleigh number at inner wall
Nu_oforced = ((Nu_cylforced*0.72)+(Nu_sphforced*0.24))/(0.72+0.24);
Nu_ofree = (0.6+((0.387*(Rao.^(1/6)))/(1+(0.559/Pr_ambf)^(9/16)).^(8/27))).^2;
Nu_o = ((Nu_ofree.^4)+(Nu_oforced^4)).^0.25;
ko = 24.84e3; %thermal conductivity outside tank at T_wo, Type III (W/m*K)
h_out = (Nu_o*ko)/Do;
end
Voir également
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!