How can i plot PI controller step respone
11 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
I used the following steps to plot the step response using (step) function:
-> num2_PI=conv(395.5*[1 1/8],[0 -0.0005854 -0.01121 0.0003176]);
den2_PI=[ 1 1.117 10.18 0.0005226 0]+num2_PI;
TF2_PI=tf(num2_PI,den2_PI);
step(TF2_PI)
the plot was :
So , how can I read the overshoot, final value and other readings from this plot2 commentaires
Sam Chak
le 27 Août 2024
You have successfully plotted the step response of an unknown system that doesn't look like a Pure PI Controller. Unfortunately, the response indicates instability and those characteristics {overshoot, final value, etc.} are undefined for unstable systems.
Mathieu NOE
le 27 Août 2024
hello
fyi, your "plant" is unstable in open loop and cannot be stabilized with this PI correction , neither with negative or positive feedback
% PI
num1 = 395.5*[1 1/8]; % P , I gains
den1 = [1 0];
C = tf(num1,den1);
% Plant
num2=[0 -0.0005854 -0.01121 0.0003176];
den2=[ 1 1.117 10.18 0.0005226 0];
G=tf(num2,den2);
step(G)
sys = feedback(G,C,-1) % standard negative feedback
step(sys)
sys = feedback(G,C,+1)% positive feedback
step(sys)
Réponses (1)
Sam Chak
le 27 Août 2024
Modifié(e) : Sam Chak
le 27 Août 2024
Hi @Lina
The 4th-order plant under consideration appears to be unstable and cannot be effectively stabilized using a low-order, simple 2-parameter PI controller. Additionally, the unstable plant also exhibits positive zeros, which can lead to initial undershoot in the system response.
In an effort to address these challenges, I have attempted to strategically place the poles and zeros of a matching 4th-order controller (on the feedback path) and the pre-filter, with the goal of limiting the undershoot percentage to less than 20% and ensuring the compensated system converges within 5 minutes. The MATLAB stepinfo() command can be utilized to analyze the step-response characteristics of the stabilized system.
%% Plant
Gp = tf([0, -0.0005854, -0.01121, 0.0003176], [1, 1.117, 10.18, 0.0005226, 0])
%% Feedback Compensator
cz = [ 1.8729742918689 % zeros
-5.13296170895781e-05
-6.69459607654879e-09];
cp = [-3.27517464154048 + 0i % poles
2.1086089615566 + 0.506178267136755i
2.1086089615566 - 0.506178267136755i
0.0282900517606163 + 0i];
ck = -7456.33220301306; % gain
Gc = tf(zpk(cz, cp, ck))
%% Pre-filter
fz = []; % zeros
fp = [-19.1775896766893 % poles
-3.27517464154048];
fk = -6.9180823798271e-07; % gain
Gf = tf(zpk(fz, fp, fk))
%% Filtered Closed-loop
Gcl = feedback(Gp, Gc); % put Gc on the feedback path
Fcl = minreal(series(Gf, Gcl))
%% Step response
step(Fcl, 600), grid on
stepinfo(Fcl)
0 commentaires
Voir également
Catégories
En savoir plus sur PID Controller Tuning dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!



