I wrote a function to reproduce the neural network operation 'sim', why is my result inconsistent with sim's result?
4 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
load("file.mat")
net=results.Network;
xpoint=[1;2;3];
a1=sim(net,xpoint)
a2=useNetwork(net,xpoint)
function output=useNetwork(net,input)
l=tansig(net.IW{1}*input+net.b{1});
output=net.LW{2,1}*l+net.b{2};
end
1 commentaire
Réponses (1)
Jaimin
le 5 Sep 2024
Hello @策 陈
In MATLAB, the neural network utilizes pre-processing and post-processing functions to handle the input and output data. You can adjust your parsing code as follows:
load("file.mat")
net=results.Network;
xpoint=[1;2;3];
a1=sim(net,xpoint)
a2=useNetwork(net,xpoint)
function output = useNetwork(net, input)
net_iw=net.IW{1,1};
net_lw=net.LW{2,1};
net_b1=net.b{1};
net_b2=net.b{2};
normalized_inputn_test = mapminmax('apply', input, net.inputs{1}.processSettings{1}); %we are applying the same pre-processing as in the net
hidden_layer_input =net_iw* normalized_inputn_test + repmat(net_b1, 1, size(input', 1)); % input layer to hidden layer
hidden_layer_output=tansig(hidden_layer_input);
output_layer_input = net_lw*hidden_layer_output+ repmat(net_b2, 1, size(hidden_layer_output', 1)); % hidden layer to output layer
output = mapminmax('reverse', output_layer_input, net.outputs{2}.processSettings{1});%we are applying the same post-processing as in the net
end
For further information, please consult the following MATLAB answer, which addresses a similar issue:
I hope this will be helpful.
0 commentaires
Voir également
Catégories
En savoir plus sur Image Data Workflows dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!