Error with SequenceInputLayer - TrainNetwork Expects Sequence Dimensions
24 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
Hello! I'm working on a project that involves training an LSTM (or GRU) model with time-series data. My data consists of 2 features (strain and deflection) over 5 time steps. I am getting the following error:
Error using trainNetwork: The training sequences are of feature dimension 8 5 but the input layer expects sequences of feature dimension 2.
Here's a breakdown of the data:
- XTrain has dimensions: [8, 5, 2] (8 sequences, 5 time steps, 2 features).
- I'm reshaping the data to [sequenceLength, numFeatures, numSequences] using permute(XTrain, [2, 3, 1]).
- YTrain has dimensions: [8, 2] (8 sequences, 2 output values).
I'm using the following layer configuration:
layers = [ ...
sequenceInputLayer(2) % 2 features: strain and deflection
lstmLayer(100, 'OutputMode', 'last') % LSTM layer
fullyConnectedLayer(2) % Output layer for 2 values: strain and deflection
regressionLayer];
What am I missing? How should I format the input data to make this work with trainNetwork?
0 commentaires
Réponse acceptée
Malay Agarwal
le 24 Sep 2024
For sequence inputs, the trainNetwork function expects the sequences to be passed as a cell array of dimensions , where m is the number of sequences. Each of the m items in the cell array should have dimensions , where n is the number of features in each sequence and T is the length of the sequences (number of time steps). You can pass an array of dimensions directly only when you have a single sequence.
Refer to the following resource for more information regarding the expected dimensions of sequence inputs for trainNetwork: https://www.mathworks.com/help/deeplearning/ref/trainnetwork.html#mw_36a68d96-8505-4b8d-b338-44e1efa9cc5e.
Here is a small example for your reference:
load("data.mat");
layers = [ ...
sequenceInputLayer(2) % 2 features: strain and deflection
lstmLayer(100, 'OutputMode', 'last') % LSTM layer
fullyConnectedLayer(2) % Output layer for 2 values: strain and deflection
regressionLayer];
maxEpochs = 50;
miniBatchSize = 27;
options = trainingOptions("adam", ...
MiniBatchSize=miniBatchSize, ...
MaxEpochs=maxEpochs, ...
ExecutionEnvironment="cpu", ...
Verbose=true);
net = trainNetwork(XTrain, YTrain, layers, options);
Hope this helps!
Plus de réponses (0)
Voir également
Catégories
En savoir plus sur Image Data Workflows dans Help Center et File Exchange
Produits
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!