bvp4c singular jacobian error
9 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
Hello,
I am trying to solve a boundary value problem. But I have faced with " Singular Jacobian Error". Does anybody know how I can solve it?
It doesn't work for Nmf>4 !!!
clc; close all; clear all;
format long e
solinit = bvpinit(x,@xinitfun);
sol= bvp4c(@odefun,@bcfun,solinit);
x= linspace(-1,1,100)
function xinit= xinitfun(x)
xinit=rand((2*Nmf+1)*6 * 2,1);
function dydx = odefun(x , y)
global Nmf Re alpha Ra Pr NR
dydx = zeros((2 * Nmf + 1) * 2 * NR,1);
dydx1= zeros((2 * Nmf + 1) * NR,1);
for ii = 1 : 2 * Nmf + 1
RI = (ii - 1) * NR;
II = (ii - 1) * NR + (2 * Nmf +1) * NR;
n = ii - Nmf - 1;
na = n * alpha;
teta_f2 = 0;
NLT1 = 0;
NLT2 = 0;
for jj = 1 : 2 * Nmf + 1
m = jj - Nmf - 1;
ma = m * alpha;
nma =(n - m) * alpha;
teta_f = 0;
diff_teta_f = 0;
if abs(n - m) <= Nmf
if abs(n - m) == 1
teta_f = (-1 / 8 * Pr) * sinh(nma .* x) ./ sinh(nma) + (1 / 8 * Pr) * cosh(nma .* x) ./ cosh(nma);
diff_teta_f = (nma * sinh(nma .* x)) ./ (8 * Pr * cosh(nma)) - (nma * cosh(nma .* x)) ./ (8 * Pr * sinh(nma));
elseif (n - m) == 0
teta_f = 0.5 .* (1 - x) / Pr;
diff_teta_f = 0.5 / Pr;
end
NLT1 = NLT1 + (y(2 + RI) + y(2 + II) * i) * ma .* ((y(3 + RI) + y(3 + II) * i) - ma ^ 2 .* (y(1 + RI) + y(1 + II) * i))...
- nma .* (y(1 + RI) + y(1 + II) * i) .* ((y(4 + RI) + y(4 + II) * i) - ma ^ 2 .* (y(2 + RI) + y(2 + II) * i));
NLT2 = NLT2 + nma .* (y(2 + RI) + y(2 + II) * i) .* (teta_f + Pr .* (y(5 + RI) + y(5 + II) * i)) - ma .*...
(y(1 + RI) + y(1 + II) * i) .* (diff_teta_f + Pr .*( y(6 + RI) + y(6 + II) * i));
end
end
if abs(n) == 1
teta_f2 = (-1 / 8 * Pr) * sinh(na .* x) ./ sinh(na) + (1 / 8 * Pr) * cosh(na .* x) ./ cosh(na);
elseif n == 0
teta_f2 = 0.5 .* (1 - x)/ Pr;
end
dydx1((ii - 1) * NR + 1 : ii * NR,1) = [y(2 + RI) + y(2 + II) * i
y(3 + RI) + y(3 + II) * i
y(4 + RI) + y(4 + II) * i
2 * (na) ^ 2 .* (y(3 + RI) + y(3 + II) * i) - na ^ 4 .* (y(1 + RI) + y(1 + II) * i) + (na * Re .* (1 - x .^ 2) .* ...
(y(3 + RI) + y(3 + II) * i - na ^ 2 .* (y(1 + RI) + y(1 + II) * i)) - na * Re * (-2) .* (y(1 + RI) + y(1 + II) * i) + na * Ra .* (y(5 + RI) + y(5 + II) * i) + (Ra/Pr) * na .* teta_f2 + NLT1) * i
y(6 + RI) + y(6 + II) * i
na ^2 .* (y(5 + RI) + y(5 + II) * i) + (na * Re * (1 - x .^ 2) .* (Pr .* (y(5 + RI) + y(5 + II) * i) + teta_f2 ) + NLT2) * i];
end
dydx=[real(dydx1);imag(dydx1)];
function res=bcfun(ya,yb)
global Nmf NR
res=[ya(1 : NR : (2 * Nmf + 1) * 2 * NR)
ya(2 : NR : (2 * Nmf + 1) * 2 * NR)
ya(5 : NR : (2 * Nmf + 1) * 2 * NR)
yb(1 : NR : (2 * Nmf + 1) * 2 * NR)
yb(2 : NR : (2 * Nmf + 1) * 2 * NR)
yb(5 : NR : (2 * Nmf + 1) * 2 * NR)];
0 commentaires
Réponse acceptée
Plus de réponses (1)
Walter Roberson
le 30 Nov 2011
In your revised code, the "x=" line must go before the "solinit=" line.
When you say that "It doesn't work for Nmf>4", is it that you see the message about singular jacobian, or is it that you see something else happen? And for certainty, Nmf must be a positive integer right? And does the code fail when Nmf is exactly equal to 4, or only when Nmf is greater than 4 (that is, 5 or higher) ?
You have a number of global variables whose values we do not know, so we cannot test your code.
Voir également
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!