Converting symbolic ODE solution to function ... Warnings

5 vues (au cours des 30 derniers jours)
Michal
Michal le 3 Oct 2024
Modifié(e) : Torsten le 3 Oct 2024
I am trying to find symbolic solution of specific non-linear ODE and then convert it to the matlab function via flowing code:
syms y(x) f(x)
syms x x0 y0 a b c d real
eqn = diff(y,x) == f/(a+b*y+c*y^2+d*y^3);
cond = y(x0)==y0;
S(x) = dsolve(eqn,cond);
sS(x) =simplify(S)
matlabFunction(sS,"File","myfunc.m");
where
a,b,c,d are scalar real constants
f(x) is known external real function
x0,y0 define initial condition of ODE problem
During matlab code conversion I always get a several Warnings:
Warning: symbolic:generate:FiniteSetsRootNotSupported'root' without index not supported. Using index '1' instead.∦
Warning: symbolic:generate:FunctionNotVerifiedToBeValidFunction 'f' not verified to be a valid MATLAB function.∦
Warning: symbolic:generate:FiniteSetsRootNotSupported'root' without index not supported. Using index '1' instead.∦
Warning: symbolic:generate:FunctionNotVerifiedToBeValidFunction 'f' not verified to be a valid MATLAB function.∦
Warning: symbolic:generate:FunctionNotVerifiedToBeValidFunction 'f' not verified to be a valid MATLAB function.∦
Warning: symbolic:generate:FiniteSetsNotSupportedFinite sets ('DOM_SET') not supported. Using element '(t4 + a*y0)/a' instead.∦
Warning: symbolic:generate:FiniteSetsNotSupportedFinite sets ('DOM_SET') not supported. Using element 't14*(t6 + t20)' instead.∦
Warning: symbolic:generate:FiniteSetsNotSupportedFinite sets ('DOM_SET') not supported. Using element '-t14*(a - (t7 + t13 + t16 + t19)^(1/2))' instead.∦
Warning: symbolic:generate:FiniteSetsNotSupportedFinite sets ('DOM_SET') not supported. Using element '-t14*(a + (t7 + t13 + t16 + t19)^(1/2))' instead.∦
and the following matlab code:
function sS = BURh103(x,a,b,c,d,x0,y0)
%BURh103
% sS = BURh103(X,A,B,C,D,X0,Y0)
% This function was generated by the Symbolic Math Toolbox version 24.2.
% 03-Oct-2024 15:16:31
t0 = roots([d.*-3.0,c.*-4.0,b.*-6.0,a.*-1.2e+1,a.*y0.*1.2e+1+b.*y0.^2.*6.0+c.*y0.^3.*4.0+d.*y0.^4.*3.0+integral(@(u)f(u),x0,x).*1.2e+1]);
t2 = t0(1);
t0 = roots([c.*-4.0,b.*-6.0,a.*-1.2e+1,a.*y0.*1.2e+1+b.*y0.^2.*6.0+c.*y0.^3.*4.0+integral(@(u)f(u),x0,x).*1.2e+1]);
t3 = t0(1);
t4 = integral(@(u)f(u),x0,x);
t5 = b.*t4;
t6 = b.*y0;
t7 = a.^2;
t9 = (b ~= 0.0);
t10 = (c == 0.0);
t11 = (d == 0.0);
t14 = 1.0./b;
t15 = sqrt(2.0);
t13 = t5.*2.0;
t16 = a.*t6.*2.0;
t17 = a+t6;
t18 = sqrt(t5);
t19 = t6.^2;
t20 = t15.*t18;
if ~all(cellfun(@isscalar,{b,c,d,t10,t11,t17,t9}))
error(message('symbolic:sym:matlabFunction:ConditionsMustBeScalar'));
end
if (d ~= 0.0)
sS = t2;
elseif (t11 & (c ~= 0.0))
sS = t3;
elseif ((t10 & t11) & (b == 0.0))
sS = (t4+a.*y0)./a;
elseif (((t9 & t10) & t11) & (t17 == 0.0))
sS = t14.*(t6+t20);
elseif (((t9 & t10) & t11) & (0.0 < t17))
sS = -t14.*(a-sqrt(t7+t13+t16+t19));
elseif (((t9 & t10) & t11) & (t17 < 0.0))
sS = -t14.*(a+sqrt(t7+t13+t16+t19));
else
sS = NaN;
end
end
I did not understand the following warning messages:
Warning: symbolic:generate:FiniteSetsRootNotSupported'root' without index not supported. Using index '1' instead.∦
Warning: symbolic:generate:FiniteSetsRootNotSupported'root' without index not supported. Using index '1' instead.∦
Warning: symbolic:generate:FiniteSetsNotSupportedFinite sets ('DOM_SET') not supported. Using element '(t4 + a*y0)/a' instead.∦
Warning: symbolic:generate:FiniteSetsNotSupportedFinite sets ('DOM_SET') not supported. Using element 't14*(t6 + t20)' instead.∦
Warning: symbolic:generate:FiniteSetsNotSupportedFinite sets ('DOM_SET') not supported. Using element '-t14*(a - (t7 + t13 + t16 + t19)^(1/2))' instead.∦
Warning: symbolic:generate:FiniteSetsNotSupportedFinite sets ('DOM_SET') not supported. Using element '-t14*(a + (t7 + t13 + t16 + t19)^(1/2))' instead.∦
What exactly these messages are trying to say?
Moreover, the matlab code is far from optimal or effective code. The auxilliary variable txx are precomputed, but the same integral(@(u)f(u),x0,x) is computed three times?!
  2 commentaires
Torsten
Torsten le 3 Oct 2024
Modifié(e) : Torsten le 3 Oct 2024
Your differential equation simply has no explicit analytical solution that could be evaluated in a MATLAB function. The main problem is the general dependence of f on x. But in either case, the solution will be implicit rather than explicit in y, i.e. something like F(x) - G(y) = 0 where the inverse of G is difficult to determine (G is a polynomial of degree 4 in y).
Michal
Michal le 3 Oct 2024
Yes no explicit solution, but possible numerical solution by roots function for each separate x.

Connectez-vous pour commenter.

Réponses (1)

Torsten
Torsten le 3 Oct 2024
Modifié(e) : Torsten le 3 Oct 2024
The solution is implicitly given by the equation
(a*y+b*y^2/2+c*y^3/3+d*y^4/4)-(a*y0+b*y0^2/2+c*y0^3/3+d*y0^4/4) - integral_{x'=x0}^{x'=x} f(x') dx' = 0
So given a specific value for x, you could in principal evaluate the integral over f with limits x0 and x and solve the resulting polynomial in y to get four different solutions (from which you had to select the correct one).
But my advice is to solve the equation numerically using ode45, e.g.

Catégories

En savoir plus sur Symbolic Math Toolbox dans Help Center et File Exchange

Produits


Version

R2024b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by