Lidar Object Detection Using Complex-YOLO v4 Network Example error when retraining
15 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
When it is modified the Region of Interest it crashes
in transformPCtoBev.m change
% labelsBEV(:,1) = int32(floor(labelsBEV(:,1)/gridParams{1,3}{1})) + 1;
labelsBEV(:,1) = int32(floor(labelsBEV(:,1)/gridParams{1,3}{1})+gridParams{1,2}{1}/2) + 1;
% loc(:,2) = int32(floor(loc(:,2)/gridW)) + 1;
loc(:,2) = int32(floor(loc(:,2)/gridW)+bevWidth/2) + 1;
1 commentaire
Cris LaPierre
le 12 Oct 2024
Here is a link to the example: Lidar Object Detection Using Complex-YOLO v4 Network
Réponses (1)
Cris LaPierre
le 12 Oct 2024
Modifié(e) : Cris LaPierre
le 12 Oct 2024
The change is causing the code to fail the iCheckBoxes test inside validateInputDataComplexYOLOv4.m. This function checks that the bounding box position falls within the image size. The changes you are wanting to make position some of the bboxes outside the image.
Specifically, these tests:
classes = {'numeric'};
attrs = {'nonempty', 'nonnan', 'finite', 'positive', 'nonzero', 'nonsparse', '2d', 'ncols', 4};
attrsYaw = {'nonempty', 'nonnan', 'finite', 'nonsparse'};
validateattributes(boxes(:,1)+boxes(:,3)-1, classes, {'<=', imageSize(2)});
validateattributes(boxes(:,2)+boxes(:,4)-1, classes, {'<=', imageSize(1)});
imageSize is [608,608,3]
For comparison, here is what the same array looks like in the original code.
Voir également
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!