Cholesky vs Eigs speed comparison?
7 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
I have many large (8000 x 8000) sparse PSD matrices for which I would like to verify that their largest eigenvalue is at most some constant C. If A denotes such a matrix, there are two ways to check this.
- eigs(A,1) <= C
- chol(C*speye(size(A,1)) - A) (and inspect the output flag)
Somehow, method 1 is much faster than 2 (this difference is not due to the computation time of C*speye(size(A,1)) - A) . Why is that? The general consensus is that cholesky decomposition is the fastest way of determining PSD-ness of matrices. Is chol not as fast for sparse matrices as eigs?
0 commentaires
Réponses (1)
Bruno Luong
le 25 Oct 2024
Modifié(e) : Bruno Luong
le 28 Oct 2024
Your test of PSD is not right. You should do:
eigs(A,1, 'smallestreal') > smallpositivenumber % 'sr', 'sa' for older MATLAB
EIGS compute one eigen value by iterative method. It converges rapidly for
eigs(A,1)
6 commentaires
Bruno Luong
le 28 Oct 2024
Modifié(e) : Bruno Luong
le 28 Oct 2024
An example with sparse matrix based on Haar basis. The ratio of two matrix norms increases like sqrt(N)
N = 2^14
A = haar(N);
% eigs(A,1) must be 1
norm(A,inf) / eigs(A,1)
function S=haar(N)
if (N<2 || (log2(N)-floor(log2(N)))~=0)
error('The input argument should be of form 2^k');
end
p=[0 0];
q=[0 1];
n=nextpow2(N);
for i=1:n-1
p=[p i*ones(1,2^i)];
t=1:(2^i);
q=[q t];
end
j = 1:N;
I = 1+0*j;
J = j;
V = 1+0*j;
for i=2:N
P=p(1,i); Q=q(1,i);
j = 1+N*(Q-1)/(2^P):N*(Q-0.5)/(2^P);
I = [I, i+0*j];
J = [J, j];
V = [V, 2^(P/2)+0*j];
j = 1+(N*((Q-0.5)/(2^P))):N*(Q/(2^P));
I = [I, i+0*j];
J = [J, j];
V = [V, -(2^(P/2))+0*j];
end
S = sparse(I,J,V,N,N);
S=S/sqrt(N);
end
Bruno Luong
le 29 Oct 2024
Modifié(e) : Bruno Luong
le 29 Oct 2024
Here is an example where the ratio is huge (= N), discovered by codinng mistake .;)
N = 2^16
j = 1:N;
I = 1+0*j;
J = j;
V = 1+0*j;
A = sparse(I,J,V,N,N);
norm(A,inf) / eigs(A,1)
Voir également
Catégories
En savoir plus sur Linear Algebra dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!