6x6 system of multivariate quadratic equations ... non-negative real solutions

5 vues (au cours des 30 derniers jours)
What is the best way (what solver?) to effectively find real non-negative solutions of 6 multivariate quadratic equations (6 variables)?
f_i(x) = 0, i = 1,6, where x = [x1,x2,...,x6] and f_i(x) is the quadratic form with known real coeffs.
  9 commentaires
Walter Roberson
Walter Roberson le 4 Nov 2024
To confirm, you have the form:
syms x [6 1]
syms A [6 6]
A = diag(diag(A))
x' * A * x
Bruno Luong
Bruno Luong le 4 Nov 2024
"A always contains only one non-zero diagonal element on the ith row/column "
To me it means
Ai(j,j) == 0 is true for i ~= j and
false for i == j.

Connectez-vous pour commenter.

Réponse acceptée

Bruno Luong
Bruno Luong le 4 Nov 2024
Modifié(e) : Bruno Luong le 4 Nov 2024
Assuming the equations are
x' * Ai * x + bi'*x + ci = 0 for i = 1,2, ..., N = 6.
Ai are assumed to be symmetric. If not replace with Asi := 1/2*(Ai + Ai').
You could try to iteratively solve linearized problem; in pseudo code:
x = randn(N,1); % or your solution of previous step, slowly changing as stated
L = zeros(N);
r = zeros(N,1);
notconverge = true;
while notconverge
for i = 1:N
L(i,:) = (2*x'*Ai + bi');
r(i) = -(x'*Ai*x + bi'*x + ci);
end
dx = L \ r;
xold = x;
x = x + dx;
x = max(x,0); % since we want solution >= 0
notconverge = norm(x-xold,p) > tolx && ...
norm(r,q) > tolr; % select p, q, tolx and tolr approproately
end
I guess fmincon, fsolve do somesort of Newton-like or linearization internally. But still worth to investogate. Here the linearization is straight forward and fast to compute. Some intermediate vectors in computing L and r are common and can be shared.
  3 commentaires
Michal
Michal le 4 Nov 2024
Modifié(e) : Michal le 4 Nov 2024
Because in my case is ci = 0, then r(i)= 0 for x = 0 and i = 1,2, ..., 6
So, in a case of all negative components of x, is then dx = L\r = 0 and convergence of the Newton iterations is broken. Am I right?
Bruno Luong
Bruno Luong le 4 Nov 2024
Modifié(e) : Bruno Luong le 5 Nov 2024
x = 0 is ONE solution (up to 2^6 in the worst case). You have Newton actually converges to a local minima of ONE solution. Bravo.
You need to change
x = randn(N,1);
so as it would converge to a desired solution.

Connectez-vous pour commenter.

Plus de réponses (2)

Aquatris
Aquatris le 1 Nov 2024
fsolve seems to work for most cases, if not lsqnonlin is also an option. here is a general explanation
  2 commentaires
Michal
Michal le 1 Nov 2024
Frankly, I hope there might be some more specialized solver for quadratic forms.
John D'Errico
John D'Errico le 1 Nov 2024
No. There is not. We all want for things that are not possible. Probably more likely to hope for peace in the world. Yeah, right.

Connectez-vous pour commenter.


Torsten
Torsten le 1 Nov 2024
Déplacé(e) : Torsten le 1 Nov 2024
I think there is no specialized solver for a system of quadratic equations. Thus a general nonlinear solver ("fsolve","lsqnonlin","fmincon") is the only chance you have.
  3 commentaires
Torsten
Torsten le 1 Nov 2024
Modifié(e) : Torsten le 1 Nov 2024
You shouldn't think about speed at the moment. You are lucky if you get your system solved and if the solution is as expected. A system of quadratic equations is a challenge.
If this works satisfactory, you can save time if you set the solution of the last call to the nonlinear solver to the initial guess of the next call (since you say that your coefficients vary slowly).
Michal
Michal le 1 Nov 2024
Modifié(e) : Michal le 1 Nov 2024
Yes... you are definitely right :)

Connectez-vous pour commenter.

Catégories

En savoir plus sur Systems of Nonlinear Equations dans Help Center et File Exchange

Produits


Version

R2024b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by