rotation of 3D XYZ points by an ijk unit vector

43 vues (au cours des 30 derniers jours)
Andrew Dickins
Andrew Dickins le 6 Nov 2024 à 13:07
Modifié(e) : Bruno Luong le 7 Nov 2024 à 10:00
I have a XYZ co-ordinate points that I would like to rotate around the origin from one vector of a defined plane to another. For example I have a unit surface vector of a plane of [0.9997 -0.0240 -0.0053] and I would like to rotation my points so that this planes normal is parallel to the X axis [1 0 0].
How can I take my [X Y Z] co-ordinates and rotate them in 3 dimensions from vector [0.9997 -0.0240 -0.0053] to [1 0 0]

Réponse acceptée

Bruno Luong
Bruno Luong le 6 Nov 2024 à 13:52
Modifié(e) : Bruno Luong le 6 Nov 2024 à 14:54
% source and target unit vectors
u = [0.9997; -0.0240; -0.0053] ; u = u/norm(u);
v = [1; 0; 0]; v = v/norm(v);
% Compute 3 x 3 rotation matrix R so that R*u is v
% see here foe ref of angle calculation
% https://www.mathworks.com/matlabcentral/answers/101590-how-can-i-determine-the-angle-between-two-vectors-in-matlab?s_tid=srchtitle
M = makehgtform("axisrotate",cross(u,v),2*atan(norm(u-v)/norm(u+v)));
R = M(1:3,1:3);
XYZ = [u, randn(3,6)], % (3 x n) your n data point coordinates
XYZ = 3×7
0.9997 0.6224 0.2960 1.1053 0.4341 0.6850 0.5836 -0.0240 -1.6776 -1.3716 -0.9371 1.1838 -0.0971 -0.5146 -0.0053 -1.1380 -1.2065 -0.3211 0.1301 -0.7294 -0.0976
<mw-icon class=""></mw-icon>
<mw-icon class=""></mw-icon>
XYZ_Rotates = R*XYZ % observe the first vector u after rotation becomes v
XYZ_Rotates = 3×7
1.0000 0.6685 0.3352 1.1291 0.4049 0.6910 0.5963 -0.0000 -1.6621 -1.3641 -0.9103 1.1939 -0.0806 -0.5004 -0.0000 -1.1346 -1.2049 -0.3151 0.1324 -0.7257 -0.0944
<mw-icon class=""></mw-icon>
<mw-icon class=""></mw-icon>
  1 commentaire
Bruno Luong
Bruno Luong le 7 Nov 2024 à 9:42
Modifié(e) : Bruno Luong le 7 Nov 2024 à 10:00
Note that the choice here of axis rotation vector r := cross(u,v) is not unique; but it's the one that implies a smallest rotation angle.
Any unit vector that has the same distance to u and v can be setected as axis of rotation.
For example normalized (u+v)/2. The angle here is pi, the largest possible choice.
% source and target unit vectors
u = [0.9997; -0.0240; -0.0053] ; u = u/norm(u);
v = [1; 0; 0]; v = v/norm(v);
% Compute 3 x 3 rotation matrix R so that R*u is v
M = makehgtform("axisrotate",(u+v)/2,pi);
R = M(1:3,1:3);
XYZ = [u, randn(3,6)], % (3 x n) your n data point coordinates
XYZ = 3×7
0.9997 0.3643 -1.2357 0.2286 -0.0913 0.7236 -0.7353 -0.0240 0.3797 -1.1702 -0.3897 -1.1961 -0.6616 -0.5746 -0.0053 0.7244 0.2336 -0.6793 0.9005 1.2260 -1.4620
<mw-icon class=""></mw-icon>
<mw-icon class=""></mw-icon>
XYZ_Rotates = R*XYZ % observe the first vector u after rotation becomes v
XYZ_Rotates = 3×7
1.0000 0.3513 -1.2084 0.2415 -0.0674 0.7327 -0.7135 -0.0000 -0.3883 1.1996 0.3841 1.1980 0.6441 0.5920 0.0000 -0.7263 -0.2271 0.6781 -0.9001 -1.2298 1.4658
<mw-icon class=""></mw-icon>
<mw-icon class=""></mw-icon>

Connectez-vous pour commenter.

Plus de réponses (0)

Produits


Version

R2023a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by