checkGradients, but the objective function has two inputs: x and xdata?

3 vues (au cours des 30 derniers jours)
Benjamin
Benjamin le 14 Nov 2024
Commenté : Torsten le 21 Nov 2024
I'm using lsqcurvefit with the following objective function and Jacobian:
function [f, jacF] = semiCircle(p, Q)
P0 = p(1);
Q0 = p(2);
r = p(3);
f = P0 + sqrt(r^2 - (Q-Q0).^2);
if nargout > 1 % need Jacobian
jacF = [1, (Q-Q0)./sqrt(r^2-(Q0-Q).^2), r./sqrt(r^2-(Q0-Q).^2)];
end
end
I'd like to use checkGradients to verify if the Jacobian is correct. However, all of the examples in the documentation just have objective functions with one input, the parameters 'x'. Whereas my function semiCircle has two inputs: the parameters 'p' and the xdata 'Q'. Is there a way to use checkGradients for such a function?

Réponse acceptée

Torsten
Torsten le 14 Nov 2024
valid = checkGradients(@(p)semiCircle(p, Q),p0)
  10 commentaires
Benjamin
Benjamin le 21 Nov 2024
Modifié(e) : Torsten le 21 Nov 2024
I reached my daily uploads limit, so I'll just put the functions here:
load('data.mat')
Vb_ll_rms = 690;
% Inital guess
p10 = 5e6;
p20 = 2.5e7;
p30 = 3e7;
p0 = [p10, p20, p30];
[Rls, Xls, Vgls, gradientCheck] = lsqcurvefitNLS(p0, Q, P, Vb_ll_rms)
Rls = 0.0024
Xls = 0.0238
Vgls = 689.9365
gradientCheck = logical
1
function [R, X, Vg, gradientCheck] = lsqcurvefitNLS(p0, Q, P, Vo)
% Box constraints
p1_ub = min(P);
p2_lb = max(Q);
p3_lb = max(Q) - min(Q);
lb = [0, p2_lb, p3_lb];
ub = [p1_ub, inf, inf];
% Linear constraints
A = [0, 1, -1];
b = min(Q);
gradientCheck = checkGradients(@(p)semiCircle(p,Q),p0);
options = optimoptions('lsqcurvefit','Display','off','SpecifyObjectiveGradient',true);
p = lsqcurvefit(@semiCircle, p0, Q, P, lb, ub, A, b, [], [], [], options);
P0 = p(1);
Q0 = p(2);
r = p(3);
R = P0/(P0^2 + Q0^2)*Vo^2;
X = Q0/(P0^2 + Q0^2)*Vo^2;
Vg = sqrt(r^2/(P0^2 + Q0^2)*Vo^2);
end
And the other one:
function [f, jacF] = semiCircle(p, Q)
P0 = p(1);
Q0 = p(2);
r = p(3);
f = P0 + sqrt(r^2 - (Q-Q0).^2);
if nargout > 1 % need Jacobian
jacF = zeros(length(Q), length(p));
for i = 1:length(Q)
jacF(i,:) = [1, (Q(i)-Q0)/sqrt(r^2-(Q0-Q(i))^2), r/sqrt(r^2-(Q0-Q(i))^2)];
end
end
end
Torsten
Torsten le 21 Nov 2024
As you said: the code works fine with R2024b.
But note that the call to "lsqcurvefit" has changed in R2023a to the actual call that you use in the code. So if your desktop MATLAB version is older than R2023a, linear constraints (A,b) are not yet accepted.

Connectez-vous pour commenter.

Plus de réponses (0)

Catégories

En savoir plus sur Systems of Nonlinear Equations dans Help Center et File Exchange

Produits


Version

R2023b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by