Parameter estimation with constraints

67 vues (au cours des 30 derniers jours)
Luis B. Walter
Luis B. Walter le 18 Nov 2024 à 5:42
Commenté : Luis B. Walter le 19 Nov 2024 à 4:51
I am working with SimBiology to fit the parameters of a three-step kinetic model (rate constants: k1, ki1, k2, ki2, k3, ki3) to a series of experimental time courses of an enzyme reaction. Additionally, I have independently obtained experimental values of kcat​ and Km​ for the reaction. The expressions for kca and Km terms of the rate constants for the three-step model are:
kcat = (k2.*k3)./(k2 + ki2+ k3)
Km = ((k2.*k3 + ki1.*(ki2 + k3))/(k1.*(k2 + ki2 + k3))).
To constrain the estimation of the rate constants, I included two 'Algebraic Rules' in SimBiology:
1) 20 < (k2.*k3)./(k2 + ki2+ k3)
2) 20 < ((k2.*k3 + ki1.*(ki2 + k3))/(k1.*(k2 + ki2 + k3)))​
In this way, I aim to ensure that the estimated rate constants satisfy the known values of kcatk_{cat}kcat​ and KmK_mKm​. However, when I run the SimBiology interface to perform the fitting, I receive the following error messages:
  1. "Model is overdetermined by the following algebraic rules: '20 < (k2·k3)/(k2 + ki2 + k3)' and '20 < ((k2·k3 + ki1·(ki2 + k3))/(k1·(k2 + ki2 + k3)))'. At least one species, parameter, or compartment in this rule must be non-constant and not defined by a reaction rate, rate rule, or repeated assignment rule."
  2. "An error occurred while trying to compile the model."
How should I proceed to constrain the fitting of the rate constants for the three-step kinetic model using these two expressions for kcat​ and Km?"
Best regards
Luis B

Réponse acceptée

Jeremy Huard
Jeremy Huard le 18 Nov 2024 à 11:40
Modifié(e) : Jeremy Huard le 18 Nov 2024 à 11:45
algebraic rules do not support inequalities. They are meant to define an equation in the form f(x) = 0 and are only recommended when you can't get a closed form solution for x.
In your case, since you have values for kcat and Km, why not define kcat and Km as constant parameters with these values, add two initial assignments for 2 of the rate constant parameters so that your equations hold true, e.g.:
Now, you can estimate the remaining rate constants:
Would this work?
Best,
Jérémy
  6 commentaires
Luis B. Walter
Luis B. Walter le 19 Nov 2024 à 0:38
Sorry, Jeremy: I think I forgot two files that you might need.
Luis B. Walter
Luis B. Walter le 19 Nov 2024 à 4:51
Yes, Walter. Correct: beginner's mistake!!!!!!
Thank you very much
Luis B

Connectez-vous pour commenter.

Plus de réponses (0)

Communautés

Plus de réponses dans  SimBiology Community

Catégories

En savoir plus sur Scan Parameter Ranges dans Help Center et File Exchange

Produits


Version

R2023b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by