Warning: Non-finite result. The integration was unsuccessful. Singularity likely. > In integral2Calc>integral2t (line 131)

4 vues (au cours des 30 derniers jours)
Hi
i run the function
[Is]=currentMoM()
f = 300000000
N = 39
ra = 1
k0 = 6.2832
Z0 = 376.9911
lambda = 1
reason_for_failure = NaN + NaNi
Warning: Non-finite result. The integration was unsuccessful. Singularity likely.
Unrecognized function or variable 'Efieldin'.

Error in solution>@(x)triangle_basisn(x,index_i).*(4./(Z0.*k0)).*Efieldin(x) (line 36)
fun=@(x)triangle_basisn(x,index_i).*(4./(Z0.*k0)).*Efieldin(x);

Error in integralCalc>iterateScalarValued (line 334)
fx = FUN(t);

Error in integralCalc>vadapt (line 148)
[q,errbnd] = iterateScalarValued(u,tinterval,pathlen, ...

Error in integralCalc (line 77)
[q,errbnd] = vadapt(vfunAB,interval, ...

Error in integral (line 87)
Q = integralCalc(fun,a,b,opstruct);

Error in solution>currentMoM (line 37)
gm(index_i) =integral(fun,Phi0(index_i),Phi0(index_i)+2*pi./(N-1));
function [Is]=currentMoM()
%UNTITLED2 Summary of this function goes here
% Detailed explanation goes here
[f,N,ra,k0,Z0,lambda] = parameter()
gamma_const=1.781;
Phi0=zeros(N);
e=exp(1);
dftm=2.*pi./(N-1);
for jj = 1:N+1
Phi0(jj)=(jj-1).*dftm;
end
% delta_c(i) = sqrt((pos(i,1) - pos(i+1,1))^2 + (pos(i,2) - pos(i+1,2))^2);
lmn = zeros(N);
%zmn = zeros(N);
gm = zeros(1,N);
zmn = zeros(N);
%vim = zeros(1,N);
%vsn = zeros(1,N);
coeif=(Z0.*k0./4).*ra.*dftm;
coeifn=(Z0./2).*sin(k0.*ra.*dftm./2);
for index_i = 1:N
for index_j = 1:N
if index_i == index_j
fun = @(x,y)triangle_basisn(x,index_i).*triangle_basisn(y,index_j).*ra.*(1-j.*(2/pi).*log(gamma_const.*k0.*ra*sqrt(2-2*cos(x-y))./2));
reason_for_failure = fun(Phi0(index_i),Phi0(index_j))
lmn(index_i,index_j) =integral2(fun, Phi0(index_i),Phi0(index_i)+2*pi./(N-1),Phi0(index_j),Phi0(index_j)+2*pi./(N-1));
else
fun = @(x,y)triangle_basisn(x,index_i).*triangle_basisn(y,index_j).*ra.^2.*besselh(0,2,k0.*ra*sqrt(2-2*cos(x-y)));
lmn(index_i,index_j) =integral2(fun,Phi0(index_i),Phi0(index_i)+2*pi./(N-1),Phi0(index_j),Phi0(index_j)+2*pi./(N-1));
zmn(index_i,index_j) = lmn(index_i,index_j);
fun=@(x)triangle_basisn(x,index_i).*(4./(Z0.*k0)).*Efieldin(x);
gm(index_i) =integral(fun,Phi0(index_i),Phi0(index_i)+2*pi./(N-1));
end
%vim(index_i) = delta_c(index_i) * exp(j*k0*(xm(index_i)*cos(phi_i)+ym(index_i)*sin(phi_i)));
%vsn(index_i) = delta_c(index_i) * exp(j*k0*(xm(index_i)*cos(phi_s)+ym(index_i)*sin(phi_s)));
end
W = linsolve(zmn,gm');
for ii=1:N
Is(ii)=W(ii);
end
y= Is
end
end
i use the integral2 and i recieve the message Warning: Non-finite result. The integration was unsuccessful. Singularity likely.
> In integral2Calc>integral2t (line 131)
what happen?
also i use the following function
function z=triangle_basisn(phi,kk)
[f,N,ra,k0,Z0,lambda] = parameter();
dftm=2.*pi./(N-1);
for jj = 1:N+1
Phi0(jj)=(jj-1).*dftm;
end
Phin=Phi0;
if kk==1
z=phi./dftm;
elseif ( phi >= Phin(kk-1) ) & ( phi <=Phin(kk));
z=(phi-Phin(kk-1))./dftm;
elseif (phi >= Phin(kk) ) & (phi <=Phin(kk+1));
z=(Phin(kk+1)-phi)./dftm;
end
end
function [f,N,ra,k0,Z0,lambda] = parameter()
%UNTITLED Summary of this function goes here
c0=3e8;
Z0=120.*pi;
ra=1;
N=39;
f=300e6;
lambda=c0./f;
k0=2*pi./lambda;
end
tnak you

Réponses (1)

Torsten
Torsten le 25 Nov 2024
fun(Phi0(1),Phi0(1))
gives
NaN + 1i*NaN
  11 commentaires
Torsten
Torsten le 26 Nov 2024
Modifié(e) : Torsten le 26 Nov 2024
sorrry i receive the same message
Output argument "z" (and possibly others) not assigned a value in the execution with "triangle_basisn"
function.
Did you read @Walter Roberson 's and my comment ? Negative values of the independent variable phi are not covered in your if-statement, and thus no value is assigned to z:
if kk==1
z=phi./dftm;
elseif ( phi >= Phin(kk-1) ) & ( phi <=Phin(kk));
z=(phi-Phin(kk-1))./dftm;
elseif (phi >= Phin(kk) ) & (phi <=Phin(kk+1));
z=(Phin(kk+1)-phi)./dftm;
end
george veropoulos
george veropoulos le 26 Nov 2024
Yes!! this is the problem sorry i see the comment later

Connectez-vous pour commenter.

Catégories

En savoir plus sur Loops and Conditional Statements dans Help Center et File Exchange

Produits


Version

R2024b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by