I want to plot many points in a single pointcare sphere.

8 vues (au cours des 30 derniers jours)
U B
U B le 30 Nov 2024
Commenté : U B le 1 Déc 2024
This is the complete code i'm using.
close all
%%
X=linspace(-5,5,500);
Y=X; N=500;
[x,y]=meshgrid(X,Y);
%%
r = (x.^2 + y.^2); rho = sqrt(r);
w0 = 3 ;
l = 500*10^-9;
GB = exp(-(r)./w0^2);
%%
ExI = GB.*1 ;
EyI = GB.*0 ;
%%
pi180 = pi/180 ;
EPhase = 0 ; EPhaseD = EPhase*pi180 ;
Phi_d = 45*pi/180 ;
a1 = exp(1i*Phi_d) ;
b1 = exp(1i*EPhaseD) ; b2 = exp(-1i*EPhaseD) ;
for Theta_ERD = 0*pi180:40*pi180:180*pi180
S_Theta_ER = sin(Theta_ERD) ; C_Theta_ER = cos(Theta_ERD);
S2_Theta_ER = S_Theta_ER^2 ; C2_Theta_ER = C_Theta_ER^2;
ER11 = C2_Theta_ER + a1*S2_Theta_ER ;
ER12 = (1-a1)*S_Theta_ER*C_Theta_ER*b2 ;
ER21 = (1-a1)*S_Theta_ER*C_Theta_ER*b1 ;
ER22 = S2_Theta_ER + a1*C2_Theta_ER ;
Ex = (ER11.*ExI + ER12.*EyI) ;
Ey = (ER21.*ExI + ER22.*EyI) ;
%%
S0=(conj(Ex).*Ex)+(conj(Ey).*Ey);
S1=(conj(Ex).*Ex)-(conj(Ey).*Ey);
S2=2.*real(conj(Ex).*Ey);
S3=2.*imag(conj(Ex).*Ey);
threshold = .01;
ns0=sqrt((S1.^2)+(S2.^2)+(S3.^2));
ns1=zeros(size(ns0,1),size(ns0,2));
ns2=zeros(size(ns0,1),size(ns0,2));
ns3=zeros(size(ns0,1),size(ns0,2));
ss=zeros(size(ns0,1),size(ns0,2));
for m = 1:size(ns0,1)
for n = 1:size(ns0,2)
if ns0(m,n)> threshold
ns3(m,n) = ns3(m,n)+(S3(m,n)/ns0(m,n));
ns1(m,n) = ns1(m,n)+(S1(m,n)/ns0(m,n));
ns2(m,n) = ns2(m,n)+(S2(m,n)/ns0(m,n));
end
end
end
%% Stokes parameters
f= 3.5;
avgfact=2^f; %averaging factor
s0=imresize(ns0,1/avgfact);
s1=imresize(ns1,1/avgfact);
s2=imresize(ns2,1/avgfact);
s3=imresize(ns3,1/avgfact);
threshold=.1;
k=1;
for i=1:size(s0,1)
for j=1:size(s0,2)
if s0(i,j)>threshold
stk(k,1)=s1(i,j);
stk(k,2)=s2(i,j);
stk(k,3)=s3(i,j);
stk(k,4)=sqrt(s1(i,j)^2+s2(i,j)^2+s3(i,j)^2);
k=k+1;
end
end
end
H=figure;
[X,Y,Z] = sphere(100);
axis square
box on
r=.999;
surf(r*X,r*Y,r*Z,'EdgeColor','none','FaceColor',[.6 .6 .6],'FaceAlpha', 0.8);
line([-1.3 1.3],[0 0],[0 0],'LineStyle','-','LineWidth',2,'Color',[0 0 0])
line([0 0],[-1.3 1.3],[0 0],'LineStyle','-','LineWidth',2,'Color',[0 0 0])
line([0 0],[0 0],[-1.3 1.3],'LineStyle','-','LineWidth',2,'Color',[0 0 0])
text(1.3,-.1,-.1,'S1','FontSize',15);text(0,1.3,0,'S2','FontSize',15);text(0,0,1.3,'S3','FontSize',15)
axis([-1 1 -1 1 -1 1])
view(122,53)
hold all
phi=-pi:.01:pi;
theta=0;
r3=.315;
r2=.72;
r1=.94;
r0=1;
sx=cos(phi);
sy=sin(phi);
sz=cos(phi.*0-pi/2);
plot3(sx,sy,sz,'k','LineWidth',1.5);
plot3(sx,sz,sy,'k','LineWidth',1.5);
plot3(sz,sy,sx,'k','LineWidth',1.5);
[p q]=size(stk);
for i=1:p
H=plot3(stk(i,1),stk(i,2),stk(i,3),'mo');
hold all
set(H,'markersize',10,'markeredgecolor','g','markerfacecolor','y','color','m','linewidth',1.2)
end
end
Now all the points are ploted seperatly in individual pointcare sphere. I want all points to be plotted in a single sphere. And if possible joint the points with a line.
Any help is appriciated.

Réponse acceptée

Subhajyoti
Subhajyoti le 30 Nov 2024
Hi @U B,
In the given code snippet, 'H=figure' is declared within the loop which is restricting the scope of the figure within the iteration. Hence, for every iteration, a new figure is create, resulting in separate figures.
You can declare the figure outside the loop, which will extend it's scope to the entire code, thus retain the current plots when adding new plots. Here, in the following implementation, I have adjusted the same to get the desired output.
X=linspace(-5,5,500);
Y=X; N=500;
[x,y]=meshgrid(X,Y);
r = (x.^2 + y.^2); rho = sqrt(r);
w0 = 3 ;
l = 500*10^-9;
GB = exp(-(r)./w0^2);
ExI = GB.*1 ;
EyI = GB.*0 ;
pi180 = pi/180 ;
EPhase = 0 ; EPhaseD = EPhase*pi180 ;
Phi_d = 45*pi/180 ;
a1 = exp(1i*Phi_d) ;
b1 = exp(1i*EPhaseD) ; b2 = exp(-1i*EPhaseD) ;
H=figure;
for Theta_ERD = 0*pi180:40*pi180:180*pi180
S_Theta_ER = sin(Theta_ERD) ; C_Theta_ER = cos(Theta_ERD);
S2_Theta_ER = S_Theta_ER^2 ; C2_Theta_ER = C_Theta_ER^2;
ER11 = C2_Theta_ER + a1*S2_Theta_ER ;
ER12 = (1-a1)*S_Theta_ER*C_Theta_ER*b2 ;
ER21 = (1-a1)*S_Theta_ER*C_Theta_ER*b1 ;
ER22 = S2_Theta_ER + a1*C2_Theta_ER ;
Ex = (ER11.*ExI + ER12.*EyI) ;
Ey = (ER21.*ExI + ER22.*EyI) ;
S0=(conj(Ex).*Ex)+(conj(Ey).*Ey);
S1=(conj(Ex).*Ex)-(conj(Ey).*Ey);
S2=2.*real(conj(Ex).*Ey);
S3=2.*imag(conj(Ex).*Ey);
threshold = .01;
ns0=sqrt((S1.^2)+(S2.^2)+(S3.^2));
ns1=zeros(size(ns0,1),size(ns0,2));
ns2=zeros(size(ns0,1),size(ns0,2));
ns3=zeros(size(ns0,1),size(ns0,2));
ss=zeros(size(ns0,1),size(ns0,2));
for m = 1:size(ns0,1)
for n = 1:size(ns0,2)
if ns0(m,n)> threshold
ns3(m,n) = ns3(m,n)+(S3(m,n)/ns0(m,n));
ns1(m,n) = ns1(m,n)+(S1(m,n)/ns0(m,n));
ns2(m,n) = ns2(m,n)+(S2(m,n)/ns0(m,n));
end
end
end
% Stokes parameters
f= 3.5;
avgfact=2^f; %averaging factor
s0=imresize(ns0,1/avgfact);
s1=imresize(ns1,1/avgfact);
s2=imresize(ns2,1/avgfact);
s3=imresize(ns3,1/avgfact);
threshold=.1;
k=1;
for i=1:size(s0,1)
for j=1:size(s0,2)
if s0(i,j)>threshold
stk(k,1)=s1(i,j);
stk(k,2)=s2(i,j);
stk(k,3)=s3(i,j);
stk(k,4)=sqrt(s1(i,j)^2+s2(i,j)^2+s3(i,j)^2);
k=k+1;
end
end
end
[X,Y,Z] = sphere(100);
axis square
box on
r=.999;
surf(r*X,r*Y,r*Z,'EdgeColor','none','FaceColor',[.6 .6 .6],'FaceAlpha', 0.8);
line([-1.3 1.3],[0 0],[0 0],'LineStyle','-','LineWidth',2,'Color',[0 0 0])
line([0 0],[-1.3 1.3],[0 0],'LineStyle','-','LineWidth',2,'Color',[0 0 0])
line([0 0],[0 0],[-1.3 1.3],'LineStyle','-','LineWidth',2,'Color',[0 0 0])
text(1.3,-.1,-.1,'S1','FontSize',15);text(0,1.3,0,'S2','FontSize',15);text(0,0,1.3,'S3','FontSize',15)
axis([-1 1 -1 1 -1 1])
hold on
view(122,53)
phi=-pi:.01:pi;
theta=0;
r3=.315;
r2=.72;
r1=.94;
r0=1;
sx=cos(phi);
sy=sin(phi);
sz=cos(phi.*0-pi/2);
hold on
plot3(sx,sy,sz,'k','LineWidth',1.5);
hold on
plot3(sx,sz,sy,'k','LineWidth',1.5);
hold on
plot3(sz,sy,sx,'k','LineWidth',1.5);
[p q]=size(stk);
for i=1:p
hold on
H=plot3(stk(i,1),stk(i,2),stk(i,3),'mo');
set(H,'markersize',10,'markeredgecolor','g','markerfacecolor','y','color','m','linewidth',1.2)
end
end
hold off
Additonally, you can refer to the following MathWorks Documentation to know more about the 'Scope of Variables' in MATLAB:
  1 commentaire
U B
U B le 1 Déc 2024
Oh Yeah. You are absolutly right. Oh thank you so much.

Connectez-vous pour commenter.

Plus de réponses (0)

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by