How to assign values to an array with broadcasting
10 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
hi in the code bwloe i recieve a message in
xi1 = x1(index_i);
xi2 = x2(index_i);
i receieve a warning

function [Is]=currentMoM()
%UNTITLED2 Summary of this function goes here
% Detailed explanation goes here
[f,N,ra,k0,Z0,lambda,gap_angle] = parameter();
gamma_const=1.781;
%Phi0=zeros(N);
e=exp(1);
dftm=(2.*gap_angle)/(N-1);
n=1:N;
Phi0=-gap_angle+(n-1).*dftm;
%for jj = 1:N
%Phi0(jj)=(jj-1).*dftm;
%end
x1 = Phi0(:); % Create a column vector of x1 values
x2 = x1 + dftm; % x2 values depend on x1
lmn=zeros(N,N);
gm = zeros(1,N);
zmn = zeros(N,N);
%opts = optimset('RelTol', 1e-6, 'AbsTol', 1e-6);
%vim = zeros(1,N);
%vsn = zeros(1,N);
coeif=(Z0.*k0./4).*ra.*dftm;
coeifn=(Z0./2).*sin(k0.*ra.*dftm./2);
B=(4./(Z0.*k0));
A=(gamma_const./2).*k0.*ra;
parfor idx = 1:N*N
% Convert linear index to subscripts
[index_i, index_j] = ind2sub([N, N], idx);
% Precompute integration bounds
xi1 = x1(index_i);
xi2 = x2(index_i);
xj1 = x1(index_j);
xj2 = x2(index_j);
if index_i == index_j
% Handle diagonal elements
funa = @(x, y) triangle_basisn(x, index_i) .* triangle_basisn(y, index_j) .* ...
ra .* (1 - 1i .* (2/pi).* (log(A) + log(abs(x - y + 1e-10))));
lmn(idx) = integral2(funa, xi1, xi2, xj1, xj2, 'RelTol', 1e-6, 'AbsTol', 1e-6);
else
% Handle off-diagonal elements
funb = @(x, y) triangle_basisn(x, index_i) .* triangle_basisn(y, index_j) .* ...
ra .* besselh(0, 2, k0 .* ra .* sqrt(2 - 2 .* cos(x - y)) +1e-9)
lmn(idx) = integral2(funb, xi1, xi2, xj1, xj2, 'RelTol', 1e-6, 'AbsTol', 1e-6);
end
% Assign to zmn
zmn(idx) = lmn(idx);
end
% Reshape the result back to a 2D matrix
lmn = reshape(lmn, [N, N]);
zmn = reshape(zmn, [N, N]);
% Compute gm vector
parfor index_i = 1:N
func = @(x) B .* triangle_basisn(x, index_i) .* Efieldin(x);
gm(index_i) = integral(func, x1(index_i), x2(index_i), 'RelTol', 1e-6, 'AbsTol', 1e-6);
end
% Solve linear system
Is = linsolve(zmn, gm');
end
0 commentaires
Réponses (1)
Walter Roberson
le 13 Déc 2024
xi1 = x1(index_i);
xi2 = x2(index_i);
xj1 = x1(index_j);
xj2 = x2(index_j);
You access x1 and x2 at two different locations. If you were to only access each of them at one location and that one location could be calculated through simple arithmetic on the parfor variable, then hypothetically you could probably slice the variable. But as it is, indexing at two different locations and that location determined by non-trivial calculations on the parfor variable... the only option is for the arrays to be broadcast arrays.
5 commentaires
Walter Roberson
le 13 Déc 2024
I do not understand why zmn(idx) = lmn(idx)
function [Is]=currentMoM()
%UNTITLED2 Summary of this function goes here
% Detailed explanation goes here
[f,N,ra,k0,Z0,lambda,gap_angle] = parameter();
gamma_const=1.781;
%Phi0=zeros(N);
e=exp(1);
dftm=(2.*gap_angle)/(N-1);
n=1:N;
Phi0=-gap_angle+(n-1).*dftm;
%for jj = 1:N
%Phi0(jj)=(jj-1).*dftm;
%end
x1 = Phi0(:); % Create a column vector of x1 values
x2 = x1 + dftm; % x2 values depend on x1
lmn=zeros(N,N);
gm = zeros(1,N);
zmn = zeros(N,N);
%opts = optimset('RelTol', 1e-6, 'AbsTol', 1e-6);
%vim = zeros(1,N);
%vsn = zeros(1,N);
coeif=(Z0.*k0./4).*ra.*dftm;
coeifn=(Z0./2).*sin(k0.*ra.*dftm./2);
B=(4./(Z0.*k0));
A=(gamma_const./2).*k0.*ra;
lmn = zeros(N,N);
for index_j = 1:N
xj1 = x1(index_j);
xj2 = x2(index_j);
lmn_i = zeros(N,1);
parfor index_i = 1:N
% Precompute integration bounds
xi1 = x1(index_i);
xi2 = x2(index_i);
if index_i == index_j
% Handle diagonal elements
funa = @(x, y) triangle_basisn(x, index_i) .* triangle_basisn(y, index_j) .* ...
ra .* (1 - 1i .* (2/pi).* (log(A) + log(abs(x - y + 1e-10))));
lmn_ii =
lmn_i(index_i) = integral2(funa, xi1, xi2, xj1, xj2, 'RelTol', 1e-6, 'AbsTol', 1e-6);
else
% Handle off-diagonal elements
funb = @(x, y) triangle_basisn(x, index_i) .* triangle_basisn(y, index_j) .* ...
ra .* besselh(0, 2, k0 .* ra .* sqrt(2 - 2 .* cos(x - y)) +1e-9)
lmn_ii = integral2(funb, xi1, xi2, xj1, xj2, 'RelTol', 1e-6, 'AbsTol', 1e-6);
end
lmn_i(index_i) = lmn_ii;
end
lmn(:,index_i) = lmn_i;
end
zmn = lmn;
% Compute gm vector
parfor index_i = 1:N
func = @(x) B .* triangle_basisn(x, index_i) .* Efieldin(x);
gm(index_i) = integral(func, x1(index_i), x2(index_i), 'RelTol', 1e-6, 'AbsTol', 1e-6);
end
% Solve linear system
Is = linsolve(zmn, gm');
end
Voir également
Catégories
En savoir plus sur Surfaces, Volumes, and Polygons dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!