trouble using pdepe to solve system of pdes
4 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
Hello,
I have to solve the following system of pdes:

The code below uses pdepe to solve it, but it returned the error:
"Spatial discretization has failed. Discretization supports only parabolic and elliptic equations, with flux term involving spatial derivative."
Could anyone help solve the problem?
Thank you in advance!
global D1 H D2
H = 91e-6; % paper height
D1 = 3e-6; % diffusion constant of pores
D2 = 1e-14;
t0 = 20
global T k M0 C K eta rho cw cf0
T = 298;
k = 0.0035;
M0 = 0.0329;
C = 39.09;
K = 0.865;
eta = 0.47;
rho = 1500;
cf0 = 0.25*rho;
cw = 1000;
global csp
A1 = 1.3258;
A2 = -0.003931;
A3 = 20.7115;
A4 = -5364.05;
A5 = -17.58;
csp = vpa((A1/T)*exp((A2*T^2 + A3*T + A4)/(T + A5)));
tSpan1 = linspace(0,t0,1001);
xmesh = linspace(0,H,20);
m = 0;
sol1 = pdepe(m,@pdefun,@icfun,@bcfun1,xmesh,tSpan1);
function [c,f,s] = pdefun(x,t,u,dudx)
global eta D1 rho M0 C K csp k D2
c = [1-eta;eta];
f = [(1-eta)*D2;eta*D1].*dudx;
rh = u(2)/csp;
A = rho*M0*C*K*(1/csp)/((1-K*rh)*(1-K*rh+C*K*rh));
s = k*[A*u(2) - u(1);-A*u(2) + u(1)];
end
function u0 = icfun(x)
u0 = [0;0];
end
function [pl,ql,pr,qr] = bcfun1(xl,ul,xr,ur,t)
global cw
pl = [ul(1);ul(2)-cw];
ql = [0;0];
pr = [0;0];
qr = [1;1];
end
0 commentaires
Réponse acceptée
Torsten
le 9 Fév 2025
Modifié(e) : Torsten
le 9 Fév 2025
Your initial condition for u(2) at x = 0 is not consistent with your boundary condition.
Use
function u0 = icfun(x)
global H cw
u0 = [0;0];
if x==0
u0(2)=cw;
end
end
instead.
And remove the vpa in the evaluation of csp.
3 commentaires
Torsten
le 9 Fév 2025
Modifié(e) : Torsten
le 9 Fév 2025
For me it works in the current online MATLAB release R2024b. What MATLAB version do you use ?
global D1 H D2
H = 91e-6; % paper height
D1 = 3e-6; % diffusion constant of pores
D2 = 1e-14;
t0 = 20;
global T k M0 C K eta rho cw cf0
T = 298;
k = 0.0035;
M0 = 0.0329;
C = 39.09;
K = 0.865;
eta = 0.47;
rho = 1500;
cf0 = 0.25*rho;
cw = 1000;
global csp
A1 = 1.3258;
A2 = -0.003931;
A3 = 20.7115;
A4 = -5364.05;
A5 = -17.58;
csp = (A1/T)*exp((A2*T^2 + A3*T + A4)/(T + A5));
tSpan1 = linspace(0,t0,1001);
xmesh = linspace(0,H,20);
m = 0;
sol1 = pdepe(m,@pdefun,@icfun,@bcfun1,xmesh,tSpan1);
u1 = sol1(:,:,1);
u2 = sol1(:,:,2);
plot(tSpan1,u2(:,end))
function [c,f,s] = pdefun(x,t,u,dudx)
global eta D1 rho M0 C K csp k D2
c = [1-eta;eta];
f = [(1-eta)*D2;eta*D1].*dudx;
rh = u(2)/csp;
A = rho*M0*C*K*(1/csp)/((1-K*rh)*(1-K*rh+C*K*rh));
s = k*[A*u(2) - u(1);-A*u(2) + u(1)];
end
function u0 = icfun(x)
global cw
u0 = [0;0];
if x==0
u0(2)=cw;
end
end
function [pl,ql,pr,qr] = bcfun1(xl,ul,xr,ur,t)
global cw
pl = [ul(1);ul(2)-cw];
ql = [0;0];
pr = [0;0];
qr = [1;1];
end
Plus de réponses (0)
Voir également
Catégories
En savoir plus sur PDE Solvers dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!
