Why did I get incorrect values when solving this equation using the fourth order Runge-Kutta Method?

7 vues (au cours des 30 derniers jours)
This is my equation,
And this is my code,
B = 30; % width of mouth, Ba + Bb = B
Y = 17600000; % surface area of the lagoon
a = 0.1; % tidal amplitude
g = 9.81; % gravitational accelaration
Cd = 0.03; % drag coefficient
L = 500; % length of the channel, La = Lb = L
H = 3; % mean depths of the mouth, Ha = Hb = H
Qf = 30; % net fresh water supply
T = 12.42*3600; % tidal period (the time it takes for a full tidal cycle)
etao_data = [0.020391;0.031391;0.043391]; % for 10min
etao_time = 0:300:10*60;
dt= 1;
t_s = 0:dt:10*60;
etao_star= interp1(etao_time,etao_data,t_s,'spline');
P = ((g * B^2 * T^2 * H^3) / (Y^2 * L * Cd * a))^5;
S = T * Qf / (a * Y);
n = length(t_s);
etal_star_17 = zeros(1, n); % Initialize eta_l_star
etal_star_17(1) = 0; % Initial condition
for i = 1:n-1
eta_o = etao_star(i);
eta_l = etal_star_17(i);
eta_m = (eta_o +eta_l)/2;
f = @(t, eta) P* ((1 + (a * eta_m / H)).^(1.5)) ./ (sqrt(1 + ((H/ (2 * Cd * L)) * (1+ (a * eta_m / H))))).* ((eta_o - eta_l) ./ sqrt(abs(eta_o - eta_l)))+ S;
k1 = dt* f(t_s(i), eta_l);
k2 = dt* f(t_s(i) + dt/2, eta_l * k1 / 2);
k3 = dt* f(t_s(i) + dt/2, eta_l * k2 / 2);
k4 = dt* f(t_s(i)+ dt , eta_l + k3);
etal_star_17(i+1) = eta_l + (k1 + 2*k2 + 2*k3 + k4)/6;
end
  6 commentaires
Torsten
Torsten le 6 Avr 2025
Modifié(e) : Torsten le 6 Avr 2025
Either use
k1 = f(t_s(i), eta_l);
k2 = f(t_s(i) + dt/2, eta_l + dt * k1 / 2);
k3 = f(t_s(i) + dt/2, eta_l + dt * k2 / 2);
k4 = f(t_s(i)+ dt , eta_l + dt * k3);
etal_star_17(i+1) = eta_l + dt * (k1 + 2*k2 + 2*k3 + k4)/6;
or
k1 = dt* f(t_s(i), eta_l);
k2 = dt* f(t_s(i) + dt/2, eta_l + k1 / 2);
k3 = dt* f(t_s(i) + dt/2, eta_l + k2 / 2);
k4 = dt* f(t_s(i)+ dt , eta_l + k3);
etal_star_17(i+1) = eta_l + (k1 + 2*k2 + 2*k3 + k4)/6;
The version you found is wrong.
Further, your function f = @(t, eta) does not depend on the input variable "eta". Thus you will have to use
f = @(t, eta) P* ((1 + (a * eta_m / H)).^(1.5)) ./ (sqrt(1 + ((H/ (2 * Cd * L)) * (1+ (a * eta_m / H))))).* ((eta_o - eta) ./ sqrt(abs(eta_o - eta)))+ S;
instead of
f = @(t, eta) P* ((1 + (a * eta_m / H)).^(1.5)) ./ (sqrt(1 + ((H/ (2 * Cd * L)) * (1+ (a * eta_m / H))))).* ((eta_o - eta_l) ./ sqrt(abs(eta_o - eta_l)))+ S;
or something even more complicated since eta_m also depends on eta_l:
f = @(t, eta) P* ((1 + (a * (eta_o + eta)/2 / H)).^(1.5)) ./ (sqrt(1 + ((H/ (2 * Cd * L)) * (1+ (a * (eta_o + eta)/2 / H))))).* ((eta_o - eta) ./ sqrt(abs(eta_o - eta)))+ S;

Connectez-vous pour commenter.

Réponse acceptée

VBBV
VBBV le 6 Avr 2025
Modifié(e) : VBBV le 6 Avr 2025
@Sajani there are some missing values for the equation. Also the exponent in equation is 0.5
B = 30; % width of mouth, Ba + Bb = B
Y = 17600000; % surface area of the lagoon
a = 0.1; % tidal amplitude
g = 9.81; % gravitational accelaration
Cd = 0.03; % drag coefficient
L = 500; % length of the channel, La = Lb = L
H = 3; % mean depths of the mouth, Ha = Hb = H
Qf = 30; % net fresh water supply
T = 12.42*3600; % tidal period (the time it takes for a full tidal cycle)
etao_data = [0.020391;0.031391;0.043391]; % for 10min
etao_time = 0:300:10*60;
dt= 1;
t_s = 0:dt:10*60;
etao_star= interp1(etao_time,etao_data,t_s,'spline');
P = ((g * B^2 * T^2 * H^3) / (Y^2 * L * Cd * a))^0.5;
% ---vv
A = 3; % a value
S = T * Qf / (a * A);
n = length(t_s);
etal_star_17 = zeros(1, n); % Initialize eta_l_star
etal_star_17(1) = 0; % Initial condition
for i = 1:n-1
eta_o = etao_star(i);
eta_l = etal_star_17(i);
eta_m = (eta_o +eta_l)/2;
f = @(t, eta) P* ((1 + (a * eta_m / H)).^(1.5)) ./ (sqrt(1 + ((H/ (2 * Cd * L)) * (1+ (a * eta_m / H))))).* ((eta_o - eta_l) ./ sqrt(abs(eta_o - eta_l)))+ S;
k1 = dt* f(t_s(i), eta_l);
k2 = dt* f(t_s(i) + dt/2, eta_l * k1 / 2);
k3 = dt* f(t_s(i) + dt/2, eta_l * k2 / 2);
k4 = dt* f(t_s(i)+ dt , eta_l + k3);
etal_star_17(i+1) = eta_l + (k1 + 2*k2 + 2*k3 + k4)/6;
end
%Y = 17600000; % surface area of the lagoona = 0.1; % tidal amplitudeg = 9.81; % gravitational accelarationCd = 0.03; % drag coefficientL = 500; % length of the channel, La = Lb = LH = 3; % mean depths of the mouth, Ha = Hb = HQf = 30; % net fresh water supplyT = 12.42*3600; % tidal period (the time it takes for a full tidal cycle)etao_data = [0.020391;0.031391;0.043391]; % for 10minetao_time = 0:300:10*60;dt= 1;t_s = 0:dt:10*60;etao_star= interp1(etao_time,etao_data,t_s,'spline');P = ((g * B^2 * T^2 * H^3) / (Y^2 * L * Cd * a))^5;S = T * Qf / (a * Y);n = length(t_s);etal_star_17 = zeros(1, n); % Initialize eta_l_staretal_star_17(1) = 0; % Initial conditionfor i = 1:n-1 eta_o = etao_star(i); eta_l = etal_star_17(i); eta_m = (eta_o +eta_l)/2; f = @(t, eta) P* ((1 + (a * eta_m / H)).^(1.5)) ./ (sqrt(1 + ((H/ (2 * Cd * L)) * (1+ (a * eta_m / H))))).* ((eta_o - eta_l) ./ sqrt(abs(eta_o - eta_l)))+ S; k1 = dt* f(t_s(i), eta_l); k2 = dt* f(t_s(i) + dt/2, eta_l * k1 / 2); k3 = dt* f(t_s(i) + dt/2, eta_l * k2 / 2); k4 = dt* f(t_s(i)+ dt , eta_l + k3); etal_star_17(i+1) = eta_l + (k1 + 2*k2 + 2*k3 + k4)/6;end

Plus de réponses (0)

Catégories

En savoir plus sur Physics dans Help Center et File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by