How to get real root of a function using fminbnd?

1 vue (au cours des 30 derniers jours)
rezheen
rezheen le 30 Avr 2025
Commenté : rezheen le 1 Mai 2025
Hello, How can I force MATLAB to only give real solutions to a math function using fminbnd?
This is my code:
x=-1:0.01:8; y=@(x) (x).^(4/3); yinv=@(x) -((x).^(4/3)); x_1=-1; x_2=8;
[xmin, ymin]=fminbnd(y,x_1,x_2);
[xmax, ymax]=fminbnd(yinv,x_1,x_2);
fprintf('The local maximum is %.2f at x = %.2f\n', -ymax, xmax)
fprintf('The local minimum is %.2f at x = %.2f\n', ymin, xmin)
Gives this as output:
The local maximum is 16.00 at x = 8.00 % Good. This is what it's supposed to be based on the x domain
The local minimum is -0.50 at x = -1.00 % This is the problem. (-1)^(4/3)=1 (The real solution)
Also, when I test in the Command Window:
(-1)^(4/3)
I get
-0.5000-0.866i
I think my code is spitting out the real part of (-1)^(4/3) that I get in Command Window.
Thanks for your help
  1 commentaire
John D'Errico
John D'Errico le 30 Avr 2025
Déplacé(e) : John D'Errico le 30 Avr 2025
I think you are confused. FMINBND is a MINIMIZER. It does not compute a root. If the minimum of your objective can be negative, you will get it.
You want to use fzero to compute a root. Even at that, you need to understand that raising a negative number to a fractional power has a complex result as the primary solution.

Connectez-vous pour commenter.

Réponse acceptée

John D'Errico
John D'Errico le 30 Avr 2025
Modifié(e) : John D'Errico le 30 Avr 2025
It sounds like you want to see the result:
(-1)^(4/3) == 1
To do that, you want to use nthroot, by splitting the fraction in that exponent into two parts.
x^(4/3) = (x^(1/3))^4
And therefore, we would have
f = @(x) nthroot(x,3)^4;
f(-1)
ans = 1
So now a nice real number.
This works as long as the denominator of the exponent is an integer, and thus we can use nthroot. Will it still work, if we tried that trick on x^0.63? Well, in theory, it migh seem so, since 0.63 = 63/100. But nthroot will fail then. Try it:
nthroot(-2,100)^63
Error using nthroot (line 20)
If X is negative, N must be an odd integer.
  1 commentaire
rezheen
rezheen le 1 Mai 2025
Perfect. the nthroot function does exactly what I'm asking. It works not only for this problem but 3 other similar problems of y functions of x with fractional exponents. Thank you

Connectez-vous pour commenter.

Plus de réponses (1)

Walter Roberson
Walter Roberson le 30 Avr 2025
x=-1:0.01:8; y=@(x) (x).^(4/3); yinv=@(x) -((x).^(4/3)); x_1=-1; x_2=8;
[xmin, ymin]=fminbnd(y,x_1,x_2);
[xmax, ymax]=fminbnd(yinv,x_1,x_2);
fprintf('The local maximum is %.2f at x = %.2f\n', -ymax, xmax)
The local maximum is 16.00 at x = 8.00
fprintf('The local minimum is %.2f+%.2fi at x = %.2f\n', real(ymin), imag(ymin), xmin)
The local minimum is -0.50+0.87i at x = -1.00
fprintf() ignores the imaginary component of numbers.
  5 commentaires
Walter Roberson
Walter Roberson le 30 Avr 2025
((-1).^4).^(1/3)
ans = 1
Steven Lord
Steven Lord le 30 Avr 2025
The realpow and/or nthroot functions may also be of interest.
x1 = (-1)^(1/3)
x1 = 0.5000 + 0.8660i
x2 = nthroot(-1, 3)
x2 = -1
x = roots([1, 0, 0, 1]) % all three roots
x =
-1.0000 + 0.0000i 0.5000 + 0.8660i 0.5000 - 0.8660i

Connectez-vous pour commenter.

Catégories

En savoir plus sur Programming dans Help Center et File Exchange

Produits


Version

R2021a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by