How to generate all 2^n combinations of n choices from a 2-vector?
16 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
If I want all combinations of 3 choices of 0 or 1, I do this:
t = combinations([0 1],[0 1],[0 1]);
If I want all combinations of 4 choices, I have to do this:
t = combinations([0 1],[0 1],[0 1],[0,1])
If I want all combinations of 5 choices, I have to do this:
t = combinations([0 1],[0 1],[0 1],[0,1],[0 1])
...and so on. Is there any way to generate all combination of a variable number of choices?
0 commentaires
Réponse acceptée
John D'Errico
le 31 Mai 2025
Modifié(e) : John D'Errico
le 31 Mai 2025
Simple enough. Don't use combinations.
n = 3;
t = dec2bin(0:2^n - 1) - '0'
Easy enough to make that into a table if you so desire.
Sigh. Do you INSIST on using combinations? This will suffice.
v = repmat({[0 1]},1,n);
t2 = combinations(v{:})
I can think of at least a couple other ways if pushed, but they shoiuld work.
3 commentaires
Steven Lord
le 2 Juin 2025
And of course, if you want a matrix from combinations (assuming all the table variables can be concatenated together) you can do that by indexing into the output from the function call.
n = 3;
t = dec2bin(0:2^n - 1) - '0';
v = repmat({[0 1]},1,n);
t2 = combinations(v{:}).Variables
doTheyMatch = isequal(t, t2)
You need to be careful, though, if you have mixed types.
t3 = combinations([0 1], ["apple", "banana"])
t4 = t3.Variables % Note that this is a string array, using "0" and "1" not 0 and 1
Matt J
le 2 Juin 2025
Modifié(e) : Matt J
le 2 Juin 2025
The spped performance as a function of n is interesting. combinations() starts to overtake ndgrid() only for n>=20 or so. I would have expected combinations() to benefit from avoiding a cat() operation.
Timing(15)
Timing(20)
function Timing(n)
timeit(@() methodDEC2BIN(n))
timeit(@() methodCOMBINATIONS(n))
timeit(@() methodNDGRID(n))
end
function methodDEC2BIN(n)
t = dec2bin(0:2^n - 1) - '0';
end
function methodCOMBINATIONS(n)
v = repmat({[0 1]},1,n);
t = combinations(v{:});
end
function methodNDGRID(n)
[t{n:-1:1}]=ndgrid([0,1]);
t=reshape( cat(n+1, t{:}) , [],n);
end
Voir également
Catégories
En savoir plus sur Matrix Indexing dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!