How to generate all 2^n combinations of n choices from a 2-vector?

16 vues (au cours des 30 derniers jours)
Jerry Guern
Jerry Guern le 31 Mai 2025
Modifié(e) : Matt J le 2 Juin 2025
If I want all combinations of 3 choices of 0 or 1, I do this:
t = combinations([0 1],[0 1],[0 1]);
If I want all combinations of 4 choices, I have to do this:
t = combinations([0 1],[0 1],[0 1],[0,1])
If I want all combinations of 5 choices, I have to do this:
t = combinations([0 1],[0 1],[0 1],[0,1],[0 1])
...and so on. Is there any way to generate all combination of a variable number of choices?

Réponse acceptée

John D'Errico
John D'Errico le 31 Mai 2025
Modifié(e) : John D'Errico le 31 Mai 2025
Simple enough. Don't use combinations.
n = 3;
t = dec2bin(0:2^n - 1) - '0'
t = 8×3
0 0 0 0 0 1 0 1 0 0 1 1 1 0 0 1 0 1 1 1 0 1 1 1
<mw-icon class=""></mw-icon>
<mw-icon class=""></mw-icon>
Easy enough to make that into a table if you so desire.
Sigh. Do you INSIST on using combinations? This will suffice.
v = repmat({[0 1]},1,n);
t2 = combinations(v{:})
t2 = 8×3 table
Var1 Var2 Var3 ____ ____ ____ 0 0 0 0 0 1 0 1 0 0 1 1 1 0 0 1 0 1 1 1 0 1 1 1
I can think of at least a couple other ways if pushed, but they shoiuld work.
  3 commentaires
Steven Lord
Steven Lord le 2 Juin 2025
And of course, if you want a matrix from combinations (assuming all the table variables can be concatenated together) you can do that by indexing into the output from the function call.
n = 3;
t = dec2bin(0:2^n - 1) - '0';
v = repmat({[0 1]},1,n);
t2 = combinations(v{:}).Variables
t2 = 8×3
0 0 0 0 0 1 0 1 0 0 1 1 1 0 0 1 0 1 1 1 0 1 1 1
<mw-icon class=""></mw-icon>
<mw-icon class=""></mw-icon>
doTheyMatch = isequal(t, t2)
doTheyMatch = logical
1
You need to be careful, though, if you have mixed types.
t3 = combinations([0 1], ["apple", "banana"])
t3 = 4×2 table
Var1 Var2 ____ ________ 0 "apple" 0 "banana" 1 "apple" 1 "banana"
t4 = t3.Variables % Note that this is a string array, using "0" and "1" not 0 and 1
t4 = 4×2 string array
"0" "apple" "0" "banana" "1" "apple" "1" "banana"
Matt J
Matt J le 2 Juin 2025
Modifié(e) : Matt J le 2 Juin 2025
The spped performance as a function of n is interesting. combinations() starts to overtake ndgrid() only for n>=20 or so. I would have expected combinations() to benefit from avoiding a cat() operation.
Timing(15)
ans = 0.0017
ans = 8.8375e-04
ans = 6.7575e-04
Timing(20)
ans = 0.1078
ans = 0.0808
ans = 0.1195
function Timing(n)
timeit(@() methodDEC2BIN(n))
timeit(@() methodCOMBINATIONS(n))
timeit(@() methodNDGRID(n))
end
function methodDEC2BIN(n)
t = dec2bin(0:2^n - 1) - '0';
end
function methodCOMBINATIONS(n)
v = repmat({[0 1]},1,n);
t = combinations(v{:});
end
function methodNDGRID(n)
[t{n:-1:1}]=ndgrid([0,1]);
t=reshape( cat(n+1, t{:}) , [],n);
end

Connectez-vous pour commenter.

Plus de réponses (1)

Matt J
Matt J le 31 Mai 2025
Modifié(e) : Matt J le 31 Mai 2025
n=3;
clear t
[t{n:-1:1}]=ndgrid([0,1]);
t=reshape( cat(n+1, t{:}) , [],n)
t = 8×3
0 0 0 0 0 1 0 1 0 0 1 1 1 0 0 1 0 1 1 1 0 1 1 1
<mw-icon class=""></mw-icon>
<mw-icon class=""></mw-icon>

Catégories

En savoir plus sur Matrix Indexing dans Help Center et File Exchange

Produits


Version

R2024a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by