Problem with fit Model with odd order polynomial
5 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
Hi, I have the data as below.
Its fits OK'ish to a 3rd order (odd polynomial), but then becomes terrible when trying a 5th order (odd) polynomial
3rd order fit below

and here is the 5th order

Here is my code:
ax=app.UIAxes3;
[x,y] = getDataFromGraph(app,ax,1); % My function which grabs the data from the plot
% 3rd order (odd)
ft=fittype('a*x^3+b*x'); % ft=fittype('a*x^5+b*x^3+c*x');
[fitobj,~,~,~]=fit(x,y,ft); %[fitobj, goodness, output, convmsg]=fit(x,N(:,i),ft)
coeff1=fitobj.a;
coeff2=fitobj.b;
yfit=coeff1*x.^3+coeff2*x;
r=y-yfit;
hold(ax,'on');
plot(ax,x,yfit,'r--');
%5th order (odd)
ft=fittype('a*x^5+b*x^3+c*x');
[fitobj,~,~,~]=fit(x,y,ft); %[fitobj, goodness, output, convmsg]=fit(x,N(:,i),ft)
coeff1=fitobj.a;
coeff2=fitobj.b;
coeff3=fitobj.c;
yfit=coeff1*x.^5+coeff2*x.^3+coeff3*x; %Remember dot notation
plot(ax,x,yfit,'g--');
0 commentaires
Réponse acceptée
Matt J
le 2 Juil 2025
Modifié(e) : Matt J
le 2 Juil 2025
Don't use a custom fit type. Use the builtin poly5 fit type, with bounds on the even degree coefficients.
[x,y] = readvars('DistortionTableData.csv'); % My function which grabs the data from the plot
lb=[-inf,0,-inf,0,-inf,0];
% 3rd order (odd)
ft=fittype('poly3');
[fitobj,~,~,~]=fit(x,y,ft,'Lower',lb(1:4),'Upper',-lb(1:4),'Normalize','on')
plot(fitobj,x,y)
%5th order (odd)
ft=fittype('poly5');
[fitobj,~,~,~]=fit(x,y,ft,'Lower',lb,'Upper',-lb,'Normalize','on')
plot(fitobj,x,y)
6 commentaires
Matt J
le 2 Juil 2025
I changed my mind in light of the conversation in Torsten's answer thread. You should definitely use normalization. I've now edited my original answer accordingly.
Plus de réponses (1)
Torsten
le 2 Juil 2025
In the case of the polynomial of degree 5, the design matrix is rank-deficient:
T = readmatrix("DistortionTableData.csv");
x = T(:,1);
y = T(:,2);
% 3rd order (odd)
A = [x.^3,x];
rank(A)
b = y;
sol = A\b;
a = sol(1);
b = sol(2);
figure(2)
hold on
plot(x,a*x.^3+b*x)
plot(x,y)
hold off
%5th order (odd)
A = [x.^5,x.^3,x];
rank(A)
b = y;
sol = A\b;
a = sol(1);
b = sol(2);
c = sol(3);
figure(4)
hold on
plot(x,a*x.^5+b*x.^3+c*x)
plot(x,y)
hold off
4 commentaires
Torsten
le 2 Juil 2025
Modifié(e) : Torsten
le 2 Juil 2025
Did you look at cond(R) ?
According to the flow chart, "mldivide" uses the QR solver in case of a non-square matrix A:
Whats this method of finding the coefficients called so i can read further (i.e sol=A/b)
It's just solving the overdetermined linear system of equations for the unknown parameter vector in the least-squares sense:
a*x.^5 + b*x.^3 + c*x = y
Matt J
le 2 Juil 2025
Modifié(e) : Matt J
le 3 Juil 2025
Did you look at cond(R) ?
We know without looking at cond( R ) that it will be the same as cond(A), but since R is triangular, the error amplification will not be as bad:
[x,~] = readvars('DistortionTableData.csv'); % My function which grabs the data from the plot
c=[1;2;3]; %ground truth coefficients
A = [x.^5,x.^3,x];
[errMLD, errQR]=compareSolvers(A,c)
In any case, the best thing to do here would probably be to normalize the x-data, which improves cond(A) greatly:
x=x/4000;
A = [x.^5,x.^3,x];
cond(A)
[errMLD, errQR]=compareSolvers(A,c)
function [errMLD, errQR]=compareSolvers(A,c)
y=A*c;
[Q,R]=qr(A,0);
errMLD=norm(A\y-c); %error using direct mldivide
errQR=norm(R\(Q'*y)-c); %error using QR
end
Voir également
Catégories
En savoir plus sur Get Started with Curve Fitting Toolbox dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!



