There is a variable error in the sample code of "Training variational Autoencoder (VAE) to generate images"

4 vues (au cours des 30 derniers jours)
The practical effect of including a KL loss term is to pack the clusters learned due to the reconstruction loss tightly around the center of the latent space, forming a continuous space to sample from.
function loss = elboLoss(Y,T,mu,logSigmaSq)
% Reconstruction loss.
reconstructionLoss = mse(Y,T);
% KL divergence.
KL = -0.5 * sum(1 + logSigmaSq - mu.^2 - exp(logSigmaSq),1);
KL = mean(KL);
% Combined loss.
loss = reconstructionLoss + KL;
end
.
% Reconstruction loss.
reconstructionLoss = mse(Y,T);
The variable T cannot be found in the sample code. Strangely, this does not prevent the code from running normally. The variable T should be the input image (X), corresponding to X in the training code.
% Loop over epochs.
while epoch < numEpochs && ~monitor.Stop
epoch = epoch + 1;
% Shuffle data.
shuffle(mbq);
% Loop over mini-batches.
while hasdata(mbq) && ~monitor.Stop
iteration = iteration + 1;
% Read mini-batch of data.
X = next(mbq);
% Evaluate loss and gradients.
[loss,gradientsE,gradientsD] = dlfeval(@modelLoss,netE,netD,X);
% Update learnable parameters.
[netE,trailingAvgE,trailingAvgSqE] = adamupdate(netE, ...
gradientsE,trailingAvgE,trailingAvgSqE,iteration,learnRate);
[netD, trailingAvgD, trailingAvgSqD] = adamupdate(netD, ...
gradientsD,trailingAvgD,trailingAvgSqD,iteration,learnRate);
% Update the training progress monitor.
recordMetrics(monitor,iteration,Loss=loss);
updateInfo(monitor,Epoch=epoch + " of " + numEpochs);
monitor.Progress = 100*iteration/numIterations;
end
end

Réponses (1)

Pramil
Pramil le 29 Juil 2025
Hi Hua,
The variable "T" is being supplied to the function "elboLoss" when it is called in the "modelLoss" function:
function [loss,gradientsE,gradientsD] = modelLoss(netE,netD,X)
% Forward through encoder.
[Z,mu,logSigmaSq] = forward(netE,X);
% Forward through decoder.
Y = forward(netD,Z);
% Calculate loss and gradients.
loss = elboLoss(Y,X,mu,logSigmaSq); % X is mapped to T
[gradientsE,gradientsD] = dlgradient(loss,netE.Learnables,netD.Learnables);
end
as you can see "modelLoss" functions calls "ebloLoss" function with arguments and here itslef "X" is mapped to the variable "T".
Hope this helps!
  1 commentaire
hua
hua le 1 Août 2025
Wow, I checked the code and you're right. Thank you, Pramil. Your answer has helped me. Wish you a happy life.

Connectez-vous pour commenter.

Catégories

En savoir plus sur Deep Learning Toolbox dans Help Center et File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by