Programming wave dispersion equation

58 vues (au cours des 30 derniers jours)
GIULIA
GIULIA le 13 Oct 2025 à 10:43
Commenté : GIULIA le 16 Oct 2025 à 13:41
Hi everyone,
I am quite new to MATLAB and asking for some help to programme the wave dispersion equation.
ω^2= gktanh(kh)
where
𝑔 is gravity (9.81), ℎ is water depth, and 𝑘 is the wavenumber.
I would like to programme this function using an iterative process, and use it whenever I need to solve it for finding wavelength L, wave period T (2pi/omega)
Could someone please guide me in the process to create it and help further understand the mechanisms of iteration in MATLAB?
Thanks a lot!
  3 commentaires
GIULIA
GIULIA le 13 Oct 2025 à 11:01
Yes, solve the equation for k.
And then hopefully understand the process so that I can re-arrange to solve for L and T :)
Sam Chak
Sam Chak le 13 Oct 2025 à 11:57
If the wave number and the angular frequency ,
then
.
This is an implicit equation because the wavelength λ cannot be defined as a direct function of the other variables.
Try using the solve() command from the Symbolic Math Toolbox, as demonstrated here, before resorting to a numerical approach to solve the problem iteratively.

Connectez-vous pour commenter.

Réponse acceptée

Torsten
Torsten le 13 Oct 2025 à 12:40
Modifié(e) : Torsten le 13 Oct 2025 à 12:43
Code taken from
% Parameters
T = 10;
h = 0.2;
g = 9.81;
tolerance = 1e-6;
% Initial guess for L
L0 = T^2/g;
% Fixed point iteration to compute L
Lsol = calculateWavelength(g, h, T, tolerance, L0);
% Plot curve
f = @(L) L - g * T^2 / (2 * pi) * tanh(2 * pi * h ./ L);
L = 1:0.1:20;
hold on
plot(L,f(L))
plot(Lsol,f(Lsol),'o')
hold off
grid on
function L = calculateWavelength(g, h, T, tolerance, L0)
% Iterate until the tolerance is met
while (1)
L = g * T^2 / (2 * pi) * tanh(2 * pi * h / L0);
if (abs(L - L0) < tolerance)
break;
end
L0 = L;
end
end
  2 commentaires
GIULIA
GIULIA le 13 Oct 2025 à 16:50
Thanks Torsten!
If i'd have to re-arrange to find T (knowing k and h) would it then be:
f = @(T) 2*pi / sqrt(g*k*tanh(k*h))
tolerance = 1e-6;
function T = calculatePeriod(g, h, tolerance, T0)
% Iterate until the tolerance is met
while (1)
T = (2 * pi) / sqrt(g * k * tanh (k*h));
if (abs(T - T0) < tolerance)
break;
end
T0 = T;
end
end
My questions in that case are:
1) What would I use as initial guess for T (T0)?
2) Can I always use 1e-6 as tolerance?
Torsten
Torsten le 13 Oct 2025 à 20:05
You can explicitly solve for T:
T = sqrt( 2*pi*L/g * coth(2*pi*h/L) )

Connectez-vous pour commenter.

Plus de réponses (1)

Sam Chak
Sam Chak le 13 Oct 2025 à 15:44
An approach that directly use the solve() function.
syms lambda positive
% parameters
T = 10;
h = 0.2;
g = 9.81;
% wave dispersion equation
eq = lambda - g*T^2/(2*pi)*tanh(2*pi*h/lambda) == 0
eq = 
sol = solve(eq, lambda)
Warning: Unable to solve symbolically. Returning a numeric solution using vpasolve.
sol = 
13.988348869027691633555641776592
  3 commentaires
Sam Chak
Sam Chak le 14 Oct 2025 à 7:17
Can you perform algebraic operations to rearrange the lambda (λ) equation to isolate the variable T on the left-hand side? This will allow you to verify whether you arrive at the same result as @Torsten in this comment.
GIULIA
GIULIA le 16 Oct 2025 à 13:41
Right, thank you!

Connectez-vous pour commenter.

Catégories

En savoir plus sur Partial Differential Equation Toolbox dans Help Center et File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by