Creating a polynomial fit expression using just the order number

55 vues (au cours des 30 derniers jours)
Jason
Jason le 18 Nov 2025 à 21:26
Modifié(e) : dpb le 20 Nov 2025 à 16:37

Hello. Im performing a fit to data using e.g a 3rd order polynomial and the expresion below. For cases when i want e.g a 4th or 5th order fit, rather than use a switch / case approach is there a way to construct the expression below simply by passing in n the polynomial order?

a123 = [x.^3, x.^2, x]\y;

Réponse acceptée

dpb
dpb le 18 Nov 2025 à 21:38
Modifié(e) : dpb le 18 Nov 2025 à 21:57
c=x.^[n:-1:1]\y;
I presume leaving off the intercept is intentional? Otherwise, there's polyfit
  5 commentaires
dpb
dpb le 19 Nov 2025 à 21:22
With a 7th order polynomial, are you forcing it through a set of points, maybe? Would a spline be an alternative?
Torsten
Torsten le 19 Nov 2025 à 23:53
Modifié(e) : dpb le 20 Nov 2025 à 16:37
xtr=x-x0;
% acoeffs=[xtr.^5,xtr.^4,xtr.^3,xtr.^2,xtr]\(y-y0) %acoeffs=[xtr.^7,xtr.^6,xtr.^5,xtr.^4,xtr.^3,xtr.^2,xtr]\(y-y0)
acoeffs=[xtr.^7,xtr.^6,xtr.^5,xtr.^4,xtr.^3,xtr.^2,xtr]\(y-y0);
will give you a polynomial that passes through (x0,y0), but will have a constant term - thus will no longer be of the form you used earlier.
Thus the property of passing through (x0,y0) is payed by losing the property of passing through (0,0).

Connectez-vous pour commenter.

Plus de réponses (0)

Catégories

En savoir plus sur Interpolation dans Help Center et File Exchange

Produits


Version

R2024b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by