Why do I get different value for pole placement function?

3 vues (au cours des 30 derniers jours)
Hasan Ghorbani
Hasan Ghorbani le 25 Mai 2015
Commenté : Walter Roberson le 26 Mai 2015
Folks,
I need to design a state variable feedback regulator for following discrete time closed-loop system with a pair of complex poles at 0.3+i0.4 and 0.3-j0.4 .
For which I am using Ackermann’s formula as below:
Since we know about the location of desired poles, hence:
And to implement above equation in Matlab, I use following:
p1=0.3 + 0.4*1i;
p2=0.3 - 0.4*1i;
P_z=(z-p1)*(z-p2);
P_phi=eval(subs(P_z,z,phi));
K1=[0 1]*([gamma,phi*gamma]\P_phi);
Result:
K1 =
-1463.39992735389 274.509346733496
But, if I use Matlab's place command instead, I get different result:
K2=place(phi,gamma,[p1 p2]);
Result:
K2 =
321.895478432477 -36.132432596429
Can someone please tell me why I get distinct values for K1 and K2 whereas I am expecting to get the same result for both

Réponse acceptée

Azzi Abdelmalek
Azzi Abdelmalek le 25 Mai 2015
Your code is not correct
gamma=[0;0.9948*10^(-4)]
phi=[1 0.0001;-0.0503 0.9896]
e=[0 1]*inv([gamma fi*gamma])
p1=0.3 + 0.4*1i;
p2=0.3 - 0.4*1i;
alpha=fliplr(poly([p1,p2]))
k1=alpha(1)*e+alpha(2)*e*phi+e*phi^2
k2=place(phi,gamma,[p1 p2])
  2 commentaires
Hasan Ghorbani
Hasan Ghorbani le 25 Mai 2015
Thank you so much for your answer. fliplr was redundant though. Following code worked beautifully:
P_z = poly([p1,p2]);
P_phi = P_z(1)*(phi^2) + P_z(2)*(phi^1) + P_z(3)*(phi^0);
K = [0 1] * inv([gamma,phi*gamma]) * P_phi;
Walter Roberson
Walter Roberson le 26 Mai 2015
[0 1] / [gamma,phi*gamma] * P_phi would be more numerically stable

Connectez-vous pour commenter.

Plus de réponses (0)

Catégories

En savoir plus sur Characters and Strings dans Help Center et File Exchange

Tags

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by