analyticity of a function

2 vues (au cours des 30 derniers jours)
abdo desoki
abdo desoki le 2 Juin 2015
Commenté : Torsten le 13 Mai 2024
is there any function can be used to check if a function is analytic or not?
  1 commentaire
Walter Roberson
Walter Roberson le 2 Juin 2015
What form is the function in? Symbolic form?

Connectez-vous pour commenter.

Réponse acceptée

John D'Errico
John D'Errico le 2 Juin 2015
Modifié(e) : John D'Errico le 2 Juin 2015
Short answer, no.
Long answer, nnnnnooooooooooooo.
No function defined in terms of floating point arithmetic is even truly continuous. So you cannot come to any such conclusion about that function given only a black box that evaluates the function. There may be arbitrarily many nasty points in such a function, that possibly will never be found.
  2 commentaires
Sean de Wolski
Sean de Wolski le 2 Juin 2015
Well if you're given a symbolic function, you could determine that it is analytic, so sometimes, yes:
syms x
isanalytic(cos(x))
Yes!
Derek
Derek le 29 Sep 2016
There doesn't seem to be a function for "isanalytic( )". Is that a custom function you've built? Has it been renamed in a newer version? Or were you saying that it could be done in theory if you had such a function?

Connectez-vous pour commenter.

Plus de réponses (3)

Roger Stafford
Roger Stafford le 2 Juin 2015
Modifié(e) : Walter Roberson le 2 Juin 2015
A complex-valued function of a complex variable is defined as analytic if it satisfies the Cauchy-Riemann equations. See:
  1 commentaire
Paul Bower
Paul Bower le 16 Nov 2023
It's also interesting to note that analytic functions solve Laplace's equation. As a result they're sometimes called harmonic functions. Polynomial functions and functions with a convergent Taylor series are the most common analytic functions.

Connectez-vous pour commenter.


Sharmi
Sharmi le 6 Juil 2023
check whether f(z)=z^2 is analytic or not
  1 commentaire
Torsten
Torsten le 6 Juil 2023
Yes, the function equals its Taylor series.

Connectez-vous pour commenter.


Mandadi
Mandadi le 13 Mai 2024
Test whetere f(z) =(x^2-y^2)+i(2*x*y) is analytic or not
  2 commentaires
Walter Roberson
Walter Roberson le 13 Mai 2024
I don't think this solves the original question.
Torsten
Torsten le 13 Mai 2024
It equals f(z) = z^2. So yes: it's analytic.

Connectez-vous pour commenter.

Tags

Aucun tag saisi pour le moment.

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by