How to generate random number from cumulative distribution function (CDF) in Matlab
12 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
Hi everyone,
Similar to R program, I'm looking for a code in Matlab that I can generate a set of random number with a specific mean (M) and standard deviation (sd).
R code to generate random number with normal distribution from CDF:
> pnorm(1.96, mean=0, sd=1)
[1] 0.9750021
0 commentaires
Réponse acceptée
Image Analyst
le 5 Juin 2015
For the more general case of an arbitrary CDF , you have to use inverse transform sampling. Attached is an example for generating a Rayleigh transform.
0 commentaires
Plus de réponses (2)
Image Analyst
le 5 Juin 2015
Did you see the example in the help for randn()? Here it is:
Random Numbers from Normal Distribution with Specific Mean and Variance
This example shows how to create an array of
random floating-point numbers that are drawn
from a normal distribution having a mean of 500 and variance of 25.
The randn function returns a sample of random numbers from a normal distribution
with mean 0 and variance 1. The general theory of random variables
states that if x is a random variable whose mean is μ
x
and variance is σ
2
x
, then the random variable, y, defined by y=ax+b,
where a and b are constants, has mean μ
y
=aμ
x
+b and variance σ
2
y
=a
2
σ
2
x
. You can apply this concept to get a sample of
normally distributed random numbers with mean 500 and variance 25.
First, initialize the random number generator to make the results in this example repeatable.
rng(0,'twister');
Create a vector of 1000 random values
drawn from a normal distribution with a mean of 500
and a standard deviation of 5.
a = 5;
b = 500;
y = a.*randn(1000,1) + b;
0 commentaires
Voir également
Catégories
En savoir plus sur Random Number Generation dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!