how to find numerical integration
1 vue (au cours des 30 derniers jours)
Afficher commentaires plus anciens
I have used symbolic function but integration is find out so please tell me how to find out numeral integration
ans =
numeric::int((176343*((94012642221359104*cos((167*sin((2386892850511152799*(1 - ((7814264961000375*cos((pi*(15*t - 180))/180))/9007199254740992 + 4661913071013161/36028797018963968)^2)^(1/2))/72057594037927936 - (7774895278537957*(378225 - 376996*((7814264961000375*cos((pi*(15*t - 180))/180))/9007199254740992 + 4661913071013161/36028797018963968)^2)^(1/2))/144115188075855872))/5000 - (344*pi)/365 + (6430765568396071*sin((2386892850511152799*(1 - ((7814264961000375*cos((pi*(15*t - 180))/180))/9007199254740992 + 4661913071013161/36028797018963968)^2)^(1/2))/36028797018963968 - (7774895278537957*(378225 - 376996*((7814264961000375*cos((pi*(15*t - 180))/180))/9007199254740992 + 4661913071013161/36028797018963968)^2)^(1/2))/72057594037927936))/18446744073709551616))/5627929523088023125 + 9007199254740992/9004687236940837)^2*(exp((31029607056644986387*(1 - ((7814264961000375*cos((pi*(15*t - 180))/180))/9007199254740992 + 4661913071013161/36028797018963968)^2)^(1/2))/1441151880758558720 - (101073638620993441*(378225 - 376996*((7814264961000375*cos((pi*(15*t - 180))/180))/9007199254740992 + 4661913071013161/36028797018963968)^2)^(1/2))/2882303761517117440)/2 + exp((45350964159711903181*(1 - ((7814264961000375*cos((pi*(15*t - 180))/180))/9007199254740992 + 4661913071013161/36028797018963968)^2)^(1/2))/1441151880758558720 - (147723010292221183*(378225 - 376996*((7814264961000375*cos((pi*(15*t - 180))/180))/9007199254740992 + 4661913071013161/36028797018963968)^2)^(1/2))/2882303761517117440)/2)^((7774895278537957*(378225 - 376996*((7814264961000375*cos((pi*(15*t - 180))/180))/9007199254740992 + 4661913071013161/36028797018963968)^2)^(1/2))/144115188075855872 - (2386892850511152799*(1 - ((7814264961000375*cos((pi*(15*t - 180))/180))/9007199254740992 + 4661913071013161/36028797018963968)^2)^(1/2))/72057594037927936)*(1 - ((67859321620704652583*x)/4398046511104000000 - ((8384940271926931*x)/1125899906842624 - 813339206376912307/562949953421312)*(6809975917315847/(8796093022208*(364110078143449/1073741824 - (6809975917315847*x)/4398046511104)^(1/2)) - 32372/15625) + (8384940271926931*(364110078143449/1073741824 - (6809975917315847*x)/4398046511104)^(1/2))/1125899906842624 - 21474655534042043958857503198413/4951760157141521099596496896)^2/(256*((8384940271926931*x)/1125899906842624 - 813339206376912307/562949953421312)*((32372*x)/15625 + (364110078143449/1073741824 - (6809975917315847*x)/4398046511104)^(1/2) - 2561098211509023/4398046511104)))^(1/2)*(-((8384940271926931*x)/1125899906842624 - 813339206376912307/562949953421312)*((32372*x)/15625 + (364110078143449/1073741824 - (6809975917315847*x)/4398046511104)^(1/2) - 2561098211509023/4398046511104))^(1/2))/40, x == 0..194)
 
clear all
clc
n = 172;
H = 20000;
CF = 0.5;
V_wind =10;
%%Constants taken
u = [7.447323 2.071808 9.010095 7.981491 194];
a = u(1); % 7.447323;
b = u(2); % 2.071808;
c = u(3); % 9.010095;
d = u(4); % 7.981491;
l = u(5); % 194;
%%Profile
x = (0:0.1:u(5));
f = 1/8.*(sqrt(u(1).*(u(5)-x).*(u(2).*x-u(5)*sqrt(u(3))+sqrt(u(3)*u(5).^2-u(4)*u(5).*x))));
D = 2*max(f);
R = D/2;
clear x
syms x zi t
y = 1/8.*(sqrt(u(1).*(u(5)-x).*(u(2).*x-u(5)*sqrt(u(3))+sqrt(u(3)*u(5).^2-u(4)*u(5).*x))));
y1 = diff(y);
y2 = sqrt(1+y1.^2);
y3 = y*y2;
nb = [sin(atan(y1)), cos(atan(y1))*cos(zi), -cos(atan(y1))*sin(zi)]
%%constants
alpha = 0.15;
albedo_ground = 0.35;
albedo_cloud = 0.5;
P_sea = 101325;
e = 0.0167;
T_g = 280; %temperature of ground in k
T_cl = 262.15; % assuming cloud at altitude 4km in k
R = 6371000; %redius of earth
epsilon_e = 0.95;
alpha_ir = 0.85;
sigma = 5.67.*10.^-8;
[T_oa, P_oa, rho_oa] = atmos(H);
delta = 23.45.*sin((pi/180)*(360/365)*(284+n));
w = 15*(12-t);
phi = 18.975;
theta = acos(sin((pi/180).*delta).*sin((pi/180).*phi)+cos((pi/180).*delta).*cos((pi/180).*phi).*cos((pi/180).*w));
%
psi = asin((sin(pi/180).*w).*cos((pi/180).*delta)/cos(theta));
I = [cos(psi)*sin(theta), cos(psi)*cos(theta), -sin(theta)];
n1 = dot(I,nb);
MA = 2.*pi.*n/365;
M = (5466.4/P_sea).*(sqrt(1229+(614.*sin(theta)).^2)-614.*sin(theta)); %call fun
Tau_atm = 0.5.*(exp(-0.65.*M)+exp(-0.95.*M));
zita = MA+2.*e.*sin(M)+1.25.*e.^2.*sin(2.*M);
ID = (1367.*Tau_atm.^M).*((1+e.*cos(zita))./(1-e.^2)).^2;
I_d = (1/2).*ID.*sin(theta).*(1.-Tau_atm.^M)./(1.-1.4.*log(Tau_atm));
Q_D = n.*alpha.*ID.*y3;
Q = int(Q_D,x,0,l);
vpa(Q,5)
1 commentaire
Réponses (0)
Voir également
Catégories
En savoir plus sur Applications dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!