problem in perimeter
1 vue (au cours des 30 derniers jours)
Afficher commentaires plus anciens
hi,
I have a matrix as follows:
I =
0 0 0 0 0 0
0 0 1 1 0 0
0 1 1 1 1 0
0 1 1 1 1 0
0 0 1 1 0 0
0 0 0 0 0 0
I want to have another matrix as follows
I =
0 2 2 2 2 0
2 2 1 1 2 2
2 1 1 1 1 2
2 1 1 1 1 2
2 2 1 1 2 2
0 2 2 2 2 0
i.e. replace every position with 2 within distance 1 from the perimeter of region 1. Thanks
0 commentaires
Réponse acceptée
Chandra Kurniawan
le 30 Nov 2011
Sorry. Here I modified my code
clear all; clc
I =[0 0 1 1 0 0;
0 1 1 1 1 0;
0 1 1 1 1 0;
0 0 1 1 0 0;
0 0 0 0 0 0];
J = zeros(size(I,1)+2, size(I,2)+2);
K = zeros(size(I,1)+2, size(I,2)+2);
J(2:size(J,1)-1, 2:size(J,2)-1) = I;
for x = 2 : size(J,1)-1
for y = 2 : size(J,2)-1
neighbour = [J(x-1,y-1) J(x-1,y) J(x-1,y+1) ...
J(x,y-1) J(x,y+1) ...
J(x+1,y-1) J(x+1,y) J(x+1,y+1)];
if (find(neighbour))
K(x,y) = 2;
end
end
end
L = K - J;
L(1,:) = []; L(end,:) = [];
L(:,1) = []; L(:,end) = []
And the result :
L =
2 2 1 1 2 2
2 1 1 1 1 2
2 1 1 1 1 2
2 2 1 1 2 2
0 2 2 2 2 0
Plus de réponses (3)
Chandra Kurniawan
le 30 Nov 2011
clear all; clc;
I =[0 0 0 0 0 0;
0 0 1 1 0 0;
0 1 1 1 1 0;
0 1 1 1 1 0;
0 0 1 1 0 0;
0 0 0 0 0 0];
J = zeros(size(I,1)+2, size(I,2)+2);
K = zeros(size(I,1)+2, size(I,2)+2);
J(2:7,2:7) = I;
for x = 2 : 7
for y = 2 : 7
neighbour = [J(x-1,y-1) J(x-1,y) J(x-1,y+1) ...
J(x,y-1) J(x,y+1) ...
J(x+1,y-1) J(x+1,y) J(x+1,y+1)];
if (find(neighbour))
K(x,y) = 2;
end
end
end
L = K - J;
L(1,:) = []; L(end,:) = [];
L(:,1) = []; L(:,end) = []
And you will get L =
L =
0 2 2 2 2 0
2 2 1 1 2 2
2 1 1 1 1 2
2 1 1 1 1 2
2 2 1 1 2 2
0 2 2 2 2 0
Andrei Bobrov
le 30 Nov 2011
variant use conv2 without Image Processing Toolbox
t = conv2(I,ones(3),'same')>0
out = t + 0
out(t>0&t~=I) = 2
or
out = 2*(conv2(I,ones(3),'same')>0+0)-I
variant use with function imdilate by Image Processing Toolbox
out = imdilate(I,ones(3))
out(out~=I) = 2
or
out = 2*imdilate(I,ones(3))-I
Image Analyst
le 30 Nov 2011
If you have the Image Processing Toolbox you can call imdilate() and then bwperim() and then combine the perimeter image with the original by multiplying the perimeter image by 2 and adding to the original image.
Voir également
Catégories
En savoir plus sur Image Segmentation and Analysis dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!